
Digital signal processing has never been more prevalent or easier to perform. It wasn’t that long ago
when the fast Fourier transform (FFT), a topic we’ll discuss in Chapter 5, was a mysterious mathemati-
cal process used only in industrial research centers and universities. Now, amazingly, the FFT is readily
available to us all. It’s even a built-in function provided by inexpensive spreadsheet software for home
computers. The availability of more sophisticated commercial signal processing software now allows
us to analyze and develop complicated signal processing applications rapidly and reliably. We can
perform spectral analysis, design digital filters, develop voice recognition, data communication, and
image compression processes using software that’s interactive both in the way algorithms are defined
and how the resulting data are graphically displayed. Since the mid-1980s the same integrated circuit
technology that led to affordable home computers has produced powerful and inexpensive hardware
development systems on which to implement our digital signal processing designs ①. Regardless, though,
of the ease with which these new digital signal processing development systems and software can be
applied, we still need a solid foundation in understanding the basics of digital signal processing. The
purpose of this book is to build that foundation.

In this chapter we’ll set the stage for the topics we’ll study throughout the remainder of this book by
defining the terminology used in digital signal processing, illustrating the various ways of graphically
representing discrete signals, establishing the notation used to describe sequences of data values,
presenting the symbols used to depict signal processing operations, and briefly introducing the concept
of a linear discrete system.

1.1 Discrete Sequences and Their Notation

In general, the term signal processing refers to the science of analyzing time-varying physical processes.
As such, signal processing is divided into two categories, analog signal processing and digital signal
processing. The term analog is used to describe a waveform that’s continuous in time and can take on a
continuous range of amplitude values. An example of an analog signal is some voltage that can be
applied to an oscilloscope, resulting in a continuous display as a function of time. Analog signals can
also be applied to a conventional spectrum analyzer to determine their frequency content. The term
analog appears to have stemmed from the analog computers used prior to 1980.

 Chapter 1
Discrete Sequences
 and Systems

 ① During a television interview in the early 1990s, a leading computer scientist stated that had automobile technology

made the same strides as the computer industry, we’d all have a car that would go a half million miles per hour and get

a half million miles per gallon. The cost of that car would be so low that it would be cheaper to throw it away than pay

for one day’s parking in San Francisco.

数字信号处理（第二版）（英文版）·2·2 Understanding Digital Signal Processing, Second Edition

These computers solved linear differential equations by means of connecting physical (electronic)
differentiators and integrators using old-style telephone operator patch cords. That way, a continuous
voltage or current in the actual circuit was analogous to some variable in a differential equation, such as
speed, temperature, air pressure, etc. (Although the flexibility and speed of modern-day digital comput-
ers have since made analog computers obsolete, a good description of the short-lived utility of analog
computers can be found in reference [1].) Because present-day signal processing of continuous radio-
type signals using resistors, capacitors, operational amplifiers, etc., has nothing to do with analogies,
the term analog is actually a misnomer. The more correct term is continuous signal processing for what
is today so commonly called analog signal processing. As such, in this book we’ll minimize the use of
the term analog signals and substitute the phrase continuous signals whenever appropriate.

1.1.1 Discrete-time Signals

The term discrete-time signal is used to describe a signal whose independent time variable is quantized
so that we know only the value of the signal at discrete instants in time. Thus a discrete-time signal is not
represented by a continuous waveform but, instead, a sequence of values. In addition to quantizing time,
a discrete-time signal quantizes the signal amplitude. We can illustrate this concept with an example.
Think of a continuous sinewave with a peak amplitude of 1 at a frequency fo described by the equation

 (1-1)

The frequency fo is measured in hertz (Hz). (In physical systems, we usually measure frequency in units
of hertz. One Hz is a single oscillation, or cycle, per second. One kilohertz (kHz) is a thousand Hz, and
a megahertz (MHz) is one million Hz. ①) With t in Eq. (1-1) representing time in seconds, the fot factor
has dimensions of cycles, and the complete 2πfot term is an angle measured in radians.

Plotting Eq. (1-1), we get the venerable continuous sinewave curve shown in Figure 1-1(a). If our
continuous sinewave represents a physical voltage, we could sample it once every ts seconds using an
analog-to-digital converter and represent the sinewave as a sequence of discrete values. Plotting those
individual values as dots would give us the discrete waveform in Figure 1-1(b). We say that Figure 1-1(b)
is the “discrete-time” version of the continuous signal in Figure 1-1(a). The independent variable t in
Eq. (1-1) and Figure 1-1(a) is continuous. The independent index variable n in Figure 1-1(b) is discrete
and can have only integer values. That is, index n is used to identify the individual elements of the
discrete sequence in Figure 1-1(b).

Do not be tempted to draw lines between the dots in Figure 1-1(b). For some reason, people
(particularly those engineers experienced in working with continuous signals) want to connect the dots
with straight lines, or the stairstep lines shown in Figure 1-1(c). Don’t fall into this innocent-looking
trap. Connecting the dots can mislead the beginner into forgetting that the x(n) sequence is nothing
more than a list of numbers. Remember, x(n) is a discrete-time sequence of individual values, and each
value in that sequence plots as a single dot. It’s not that we’re ignorant of what lies between the dots of
x(n); there is nothing between those dots.

 ① The dimension for frequency used to be cycles/second; that’s why the tuning dials of old radios indicate frequency as

kilocycles/second (kcps) or megacycles/second (Mcps). In 1960 the scientific community adopted hertz as the unit of

measure for frequency in honor of the German physicist, Heinrich Hertz, who first demonstrated radio wave transmis-

sion and reception in 1887.

Chapter 1 Discrete Sequences and Systems ·3·3Chapter 1 Discrete Sequences and Systems

Figure 1-1 A time-domain sinewave: (a) continuous waveform representation; (b) dis-

crete sample representation; (c) discrete samples with connecting lines.

We can reinforce this discrete-time sequence concept by listing those Figure 1-1(b) sampled values
as follows:

(1-2)

where n represents the time index integer sequence 0, 1, 2, 3, etc., and ts is some constant time period.
Those sample values can be represented collectively, and concisely, by the discrete-time expression

 (1-3)

(Here again, the 2πfonts term is an angle measured in radians.) Notice that the index n in Eq. (1-2) started
with a value of 0, instead of 1. There’s nothing sacred about this; the first value of n could just as
well have been 1, but we start the index n at zero out of habit because doing so allows us to describe

(a)

(b)

(c)

数字信号处理（第二版）（英文版）·4·4 Understanding Digital Signal Processing, Second Edition

the sinewave starting at time zero. The variable x(n) in Eq. (1-3) is read as “the sequence x of n.”
Equations (1-1) and (1-3) describe what are also referred to as time-domain signals because the
independent variables, the continuous time t in Eq. (1-1), and the discrete-time nts values used in Eq. (1-3)
are measures of time.

With this notion of a discrete-time signal in mind, let’s say that a discrete system is a collection of
hardware components, or software routines, that operate on a discrete-time signal sequence. For example,
a discrete system could be a process that gives us a discrete output sequence y(0), y(1), y(2), etc., when
a discrete input sequence of x(0), x(1), x(2), etc., is applied to the system input as shown in Figure 1-2(a).
Again, to keep the notation concise and still keep track of individual elements of the input and output
sequences, an abbreviated notation is used as shown in Figure 1-2(b) where n represents the integer
sequence 0, 1, 2, 3, etc. Thus, x(n) and y(n) are general variables that represent two separate sequences
of numbers. Figure 1-2(b) allows us to describe a system’s output with a simple expression such as

 (1-4)

Illustrating Eq. (1-4), if x(n) is the five-element sequence: x(0) = 1, x(1) = 3, x(2) = 5, x(3) = 7, and
x(4) = 9, then y(n) is the five-element sequence y(0) = 1, y(1) = 5, y(2) = 9, y(3) = 13, and y(4) = 17.

Figure 1-2 With an input applied, a discrete system provides an output:

(a) the input and output are sequences of individual values;

(b) input and output using the abbreviated notation of x(n) and y(n).

The fundamental difference between the way time is represented in continuous and discrete sys-
tems leads to a very important difference in how we characterize frequency in continuous and discrete
systems. To illustrate, let’s reconsider the continuous sinewave in Figure 1-1(a). If it represented a
voltage at the end of a cable, we could measure its frequency by applying it to an oscilloscope, a
spectrum analyzer, or a frequency counter. We’d have a problem, however, if we were merely given the
list of values from Eq. (1-2) and asked to determine the frequency of the waveform they represent. We’d
graph those discrete values, and, sure enough, we’d recognize a single sinewave as in Figure 1-1(b). We
can say that the sinewave repeats every 20 samples, but there’s no way to determine the exact sinewave
frequency from the discrete sequence values alone. You can probably see the point we’re leading to
here. If we knew the time between samples — the sample period ts — we’d be able to determine the
absolute frequency of the discrete sinewave.

Given that the ts sample period is, say, 0.05 milliseconds/sample, the period of the sinewave is

 (1-5)

Chapter 1 Discrete Sequences and Systems ·5·5Chapter 1 Discrete Sequences and Systems

Because the frequency of a sinewave is the reciprocal of its period, we now know that the sinewave’s
absolute frequency is 1/(1 ms), or 1 kHz. On the other hand, if we found that the sample period was, in
fact, 2 milliseconds, the discrete samples in Figure 1-1(b) would represent a sinewave whose period is
40 milliseconds and whose frequency is 25 Hz. The point here is that, in discrete systems, absolute
frequency determination in Hz is dependent on the sample frequency fs = 1/ts. We’ll be reminded of this
dependence throughout the rest of this book.

In digital signal processing, we often find it necessary to characterize the frequency content of
discrete-time domain signals. When we do so, this frequency representation takes place in what’s called
the frequency domain. By way of example, let’s say we have a discrete sinewave sequence x1(n) with an
arbitrary frequency fo Hz as shown on the left side of Figure 1-3(a). We can also describe x1(n) as shown
on the right side of Figure 1-3(a) by indicating that it has a frequency of 1, measured in units of fo, and
no other frequency content. Although we won’t dwell on it just now, notice that the frequencydomain
representations in Figure 1-3 are themselves discrete.

Figure 1-3 Time- and frequency-domain graphical representations: (a) sinewave of frequency

fo; (b) reduced amplitude sinewave of frequency 2fo; (c) sum of the two sinewaves.

To illustrate our time- and frequency-domain representations further, Figure 1-3(b) shows another
discrete sinewave x2(n), whose peak amplitude is 0.4, with a frequency of 2fo. The discrete sample
values of x2(n) are expressed by the equation

 (1-6)

(a)

(b)

(c)

数字信号处理（第二版）（英文版）·6·6 Understanding Digital Signal Processing, Second Edition

When the two sinewaves, x1(n) and x2(n), are added to produce a new waveform xsum(n), its time-
domain equation is

 (1-7)

and its time- and frequency-domain representations are those given in Figure 1-3(c). We interpret the
Xsum(m) frequency-domain depiction, the spectrum, in Figure 1-3(c) to indicate that Xsum(n) has a
frequency component of fo Hz and a reduced-amplitude frequency component of 2fo Hz.

Notice three things in Figure 1-3. First, time sequences use lowercase variable names like the “x” in
x1(n), and uppercase symbols for frequencydomain variables such as the “X” in X1(m). The term X1(m)
is read as “the spectral sequence X sub one of m.” Second, because the X1(m) frequency-domain repre-
sentation of the x1(n) time sequence is itself a sequence (a list of numbers), we use the index “m” to keep
track of individual elements in X1(m). We can list frequency-domain sequences just as we did with the
time sequence in Eq. (1-2). For example Xsum(m) is listed as

where the frequency index m is the integer sequence 0, 1, 2, 3, etc. Third, because the x1(n) + x2(n)
sinewaves have a phase shift of zero degrees relative to each other, we didn’t really need to bother
depicting this phase relationship in Xsum(m) in Figure 1-3(c). In general, however, phase relationships in
frequency-domain sequences are important, and we’ll cover that subject in Chapter 4.

A key point to keep in mind here is that we now know three equivalent ways to describe a discrete-
time waveform. Mathematically, we can use a time-domain equation like Eq. (1-6). We can also repre-
sent a time-domain waveform graphically as we did on the left side of Figure 1-3, and we can depict its
corresponding, discrete, frequency-domain equivalent as that on the right side of Figure 1-3.

As it turns out, the discrete-time domain signals we’re concerned with are not only quantized in
time; their amplitude values are also quantized. Because we represent all digital quantities with binary
numbers, there’s a limit to the resolution, or granularity, that we have in representing the values of
discrete numbers.

In the former section, we already met a kind of discrete sequence, which is actually named as
Sinusoidal Sequence. The sinusoidal sequences are used very frequently in the digital signal processing
area. Now, we will introduce more kinds of basic and frequently used discrete sequences that will play
important roles in the analysis and design of discrete systems. What’s more, we can construct arbitrary
sequences based on these basic sequences.

The most frequently used discrete sequences are the unit sample sequence, the unit step sequence,
the rectangular sequence and the sinusoidal sequence.

Chapter 1 Discrete Sequences and Systems ·7·7Chapter 1 Discrete Sequences and Systems

1.1.2 Frequently Used Discrete Sequences

The Unit Sample Sequence
The simplest and one of the most useful sequences is the unit sample sequence, often called the discrete-
time impulse or the unit impulse. It is denoted by δ (n) and defined by

 (1-8)

It’s plotted in the Figure 1-4.

Figure 1-4 The Unit Sample Sequence.

The unit sample sequence shifted by k samples is thus given by

 (1-9)

It’s plotted in the Figure 1-5.

Figure 1-5 The Unit Sample Sequence Shifted by k Samples.

The Unit Step Sequence
The second basic sequence is the unit step sequence, which is denoted by u(n) and its definition is

 (1-10)

It’s plotted in the Figure 1-6.

Figure 1-6 The Unit Step Sequence.

δ (n)

1

0

δ (n-2)

1

0

u (n)

n

1

0

数字信号处理（第二版）（英文版）·8·8 Understanding Digital Signal Processing, Second Edition

The unit sample sequence and the unit step sequence are related as follows:

 (1-11)

 . (1-12)

The Rectangular Sequence
The rectangular sequence is denoted by RN(n) and is defined by

 (1-13)

It’s plotted in the Figure 1-7.

Figure 1-7 The rectangular Sequence.

The relationship of RN(n), u(n) and δ (n) is as follows.

RN(n) can be expressed as:

RN(n) = u(n) - u(n - N),

and

The Real Exponential Sequence
The real exponential sequence is generally denoted by x(n) and its definition is

x(n) = anu(n), a ≠ 0 & a ∈ R, when 0 < a < 1. (1-14)

It’s plotted in the Figure 1-8.

Figure 1-8 The real exponential Sequence.

RN (n)

0 nN - 1

x (n)

0 n

Chapter 1 Discrete Sequences and Systems ·9·9Chapter 1 Discrete Sequences and Systems

1.2 Signal Amplitude, Magnitude, Power

Let’s define two important terms that we’ll be using throughout this book: amplitude and magnitude.
It’s not surprising that, to the layman, these terms are typically used interchangeably. When we check
our thesaurus, we find that they are synonymous. ① In engineering, however, they mean two different
things, and we must keep that difference clear in our discussions. The amplitude of a variable is the
measure of how far, and in what direction, that variable differs from zero. Thus, signal amplitudes can
be either positive or negative. The time-domain sequences in Figure 1-3 presented the sample value
amplitudes of three different waveforms. Notice how some of the individual discrete amplitude values
were positive and others were negative.

The magnitude of a variable, on the other hand, is the measure of how far, regardless of direction, its
quantity differs from zero. So magnitudes are always positive values. Figure 1-9 illustrates how the
magnitude of the x1(n) time sequence in Figure 1-3(a) is equal to the amplitude, but with the sign always
being positive for the magnitude. We use the modulus symbol (||) to represent the magnitude of x1(n).
Occasionally, in the literature of digital signal processing, we’ll find the term magnitude referred to as
the absolute value.

Figure 1-9 Magnitude samples, |x1(n)|, of the time waveform in Figure 1-3(a).

When we examine signals in the frequency domain, we’ll often be interested in the power level of
those signals. The power of a signal is proportional to its amplitude (or magnitude) squared. If we
assume that the proportionality constant is one, we can express the power of a sequence in the time or
frequency domains as

 (1-15)

or

 (1-15′)

Very often we’ll want to know the difference in power levels of two signals in the frequency domain.
Because of the squared nature of power, two signals with moderately different amplitudes will have a
much larger difference in their relative powers. In Figure 1-3, for example, signal x1(n)’s amplitude is
2.5 times the amplitude of signal x2(n), but its power level is 6.25 that of x2(n)’s power level. This is
illustrated in Figure 1-10 where both the amplitude and power of Xsum(m) are shown.

 ① Of course, laymen are “other people.” To the engineer, the brain surgeon is the layman. To the brain surgeon, the

engineer is the layman.

数字信号处理（第二版）（英文版）·10·
10 Understanding Digital Signal Processing, Second Edition

Figure 1-10 Frequency-domain amplitude and frequency-domain

power of the xsum(n) time waveform in Figure 1-3(c).

Because of their squared nature, plots of power values often involve showing both very large and
very small values on the same graph. To make these plots easier to generate and evaluate, practitioners
usually employ the decibel scale.

1.3 Signal Processing Operational Symbols

We’ll be using block diagrams to graphically depict the way digital signal-processing operations are
implemented. Those block diagrams will comprise an assortment of fundamental processing symbols,
the most common of which are illustrated and mathematically defined in Figure 1-11.

Figure 1-11(a) shows the addition, element for element, of two discrete sequences to provide a new
sequence. If our sequence index n begins at 0, we say that the first output sequence value is equal to the
sum of the first element of the b sequence and the first element of the c sequence, or a(0) = b(0) + c(0).
Likewise, the second output sequence value is equal to the sum of the second element of the b sequence
and the second element of the c sequence, or a(1) = b(1) + c(1). Equation (1-7) is an example of adding
two sequences. The subtraction process in Figure 1-11(b) generates an output sequence that’s the
element-for-element difference of the two input sequences. There are times when we must calculate a
sequence whose elements are the sum of more than two values. This operation, illustrated in Figure 1-11(c),
is called summation and is very common in digital signal processing. Notice how the lower and upper
limits of the summation index k in the expression in Figure 1-11(c) tell us exactly which elements of the
b sequence to sum to obtain a given a(n) value. Because we’ll encounter summation operations so often,
let’s make sure we understand their notation. If we repeat the summation equation from Figure 1-11(c)
here we have

 (1-16)

This means that

(1-17)

We’ll begin using summation operations in earnest when we discuss digital filters in Chapter 7.

Chapter 1 Discrete Sequences and Systems ·11·
11Chapter 1 Discrete Sequences and Systems

Figure 1-11 Terminology and symbols used in digital signal processing block diagrams.

The multiplication of two sequences is symbolized in Figure 1-11(d). Multiplication generates an
output sequence that’s the element-for-element product of two input sequences: a(0) = b(0)c(0), a(1) =
b(1)c(1), and so on. The last fundamental operation that we’ll be using is called the unit delay in
Figure 1-11(e). While we don’t need to appreciate its importance at this point, we’ll merely state that the
unit delay symbol signifies an operation where the output sequence a(n) is equal to a delayed version of
the b(n) sequence. For example, a(5) = b(4), a(6) = b(5), a(7) = b(6), etc. As we’ll see in Chapter 7, due
to the mathematical techniques used to analyze digital filters, the unit delay is very often depicted using
the term z-1.

The symbols in Figure 1-11 remind us of two important aspects of digital signal processing. First,
our processing operations are always performed on sequences of individual discrete values, and second,
the elementary operations themselves are very simple. It’s interesting that, regardless of how compli-
cated they appear to be, the vast majority of digital signal processing algorithms can be performed using

数字信号处理（第二版）（英文版）·12·
12 Understanding Digital Signal Processing, Second Edition

combinations of these simple operations. If we think of a digital signal processing algorithm as a recipe,
then the symbols in Figure 1-11 are the ingredients.

1.4 Introduction to Discrete Linear Time-Invariant Systems

In keeping with tradition, we’ll introduce the subject of linear time-invariant(LTI) systems at this early
point in our text. Although an appreciation for LTI systems is not essential in studying the next three
chapters of this book, when we begin exploring digital filters, we’ll build on the strict definitions of
linearity and time invariance. We need to recognize and understand the notions of linearity and time
invariance not just because the vast majority of discrete systems used in practice are LTI systems, but
because LTI systems are very accommodating when it comes to their analysis. That’s good news for us
because we can use straightforward methods to predict the performance of any digital signal processing
scheme as long as it’s linear and time invariant. Because linearity and time invariance are two important
system characteristics having very special properties, we’ll discuss them now.

1.5 Discrete Linear Systems

The term linear defines a special class of systems where the output is the superposition, or sum, of the
individual outputs had the individual inputs been applied separately to the system. For example, we can
say that the application of an input x1(n) to a system results in an output y1(n). We symbolize this
situation with the following expression:

 (1-18)

Given a different input x2(n), the system has a y2(n) output as

 (1-19)

For the system to be linear, when its input is the sum x1(n) + x2(n), its output must be the sum of the
individual outputs so that

 (1-20)

One way to paraphrase expression (1-20) is to state that a linear system’s output is the sum of the
outputs of its parts. Also, part of this description of linearity is a proportionality characteristic. This
means that if the inputs are scaled by constant factors c1 and c2 then the output sequence parts are also
scaled by those factors as

 (1-21)

In the literature, this proportionality attribute of linear systems in expression (1-21) is sometimes called
the homogeneity property. With these thoughts in mind, then, let’s demonstrate the concept of system
linearity.

1.5.1 Example of a Linear System

To illustrate system linearity, let’s say we have the discrete system shown in Figure 1-12(a) whose
output is defined as

Chapter 1 Discrete Sequences and Systems ·13·
13Chapter 1 Discrete Sequences and Systems

 (1-22)

that is, the output sequence is equal to the negative of the input sequence with the amplitude reduced by
a factor of two. If we apply an x1(n) input sequence representing a 1-Hz sinewave sampled at a rate of 32
samples per cycle, we’ll have a y1(n) output as shown in the center of Figure 1-12(b). The frequency-
domain spectral amplitude of the y1(n) output is the plot on the right side of Figure 1-12(b), indicating
that the output comprises a single tone of peak amplitude equal to -0.5 whose frequency is 1 Hz. Next,
applying an x2(n) input sequence representing a 3-Hz sinewave, the system provides a y2(n) output
sequence, as shown in the center of Figure 1-12(c). The spectrum of the y2(n) output, Y2(m), confirming
a single 3-Hz sinewave output is shown on the right side of Figure 1-12(c). Finally—here’s where the
linearity comes in—if we apply an x3(n) input sequence that’s the sum of a 1-Hz sinewave and a 3-Hz
sinewave, the y3(n) output is as shown in the center of Figure 1-12(d). Notice how y3(n) is the sample-
for-sample sum of y1(n) and y2(n). Figure 1-12(d) also shows that the output spectrum Y3(m) is the sum of
Y1(m) and Y2(m). That’s linearity.

Figure 1-12 Linear system input-to-output relationships: (a) system block diagram where y(n) =

-----x(n)/2; (b) system input and output with a 1-Hz sinewave applied; (c) with a

3-Hz sinewave applied; (d) with the sum of 1-Hz and 3-Hz sinewaves applied.

数字信号处理（第二版）（英文版）·14·
14 Understanding Digital Signal Processing, Second Edition

1.5.2 Example of a Nonlinear System

It’s easy to demonstrate how a nonlinear system yields an output that is not equal to the sum of y1(n) and
y2(n) when its input is x1(n) + x2(n). A simple example of a nonlinear discrete system is that in Figure 1-13(a)
where the output is the square of the input described by

 (1-23)
We’ll use a well known trigonometric identity and a little algebra to predict the output of this nonlinear
system when the input comprises simple sinewaves. Following the form of Eq. (1-3), let’s describe a
sinusoidal sequence, whose frequency fo = 1 Hz, by

 (1-24)

Equation (1-24) describes the x1(n) sequence on the left side of Figure 1-13(b). Given this x1(n) input
sequence, the y1(n) output of the nonlinear system is the square of a 1-Hz sinewave, or

 (1-25)

We can simplify our expression for y1(n) in Eq. (1-25) by using the following trigonometric identity:

 (1-26)

Using Eq. (1-26), we can express y1(n) as

 (1-27)

which is shown as the all positive sequence in the center of Figure 1-13(b). Because Eq. (1-26) results
in a frequency sum (α + β) and frequency difference (α - β) effect when multiplying two sinusoids, the
y1(n) output sequence will be a cosine wave of 2 Hz and a peak amplitude of -0.5, added to a constant
value of 1/2. The constant value of 1/2 in Eq. (1-27) is interpreted as a zero Hz frequency component, as
shown in the Y1(m) spectrum in Figure 1-13(b). We could go through the same algebraic exercise to
determine that, when a 3-Hz sinewave x2(n) sequence is applied to this nonlinear system, the output
y2(n) would contain a zero Hz component and a 6 Hz component, as shown in Figure 1-13(c).

System nonlinearity is evident if we apply an x3(n) sequence comprising the sum of a 1-Hz and a
3-Hz sinewave as shown in Figure 1-13(d). We can predict the frequency content of the y3(n) output
sequence by using the algebraic relationship

 (1-28)

where a and b represent the 1-Hz and 3-Hz sinewaves, respectively. From Eq. (1-26), the a2 term in
Eq. (1-28) generates the zero-Hz and 2-Hz output sinusoids in Figure 1-13(b). Likewise, the b2 term
produces in y3(n) another zero-Hz and the 6-Hz sinusoid in Figure 1-13(c). However, the 2ab term
yields additional 2-Hz and 4-Hz sinusoids in y3(n). We can show this algebraically by using Eq. (1-26)
and expressing the 2ab term in Eq. (1-28) as

Chapter 1 Discrete Sequences and Systems ·15·
15Chapter 1 Discrete Sequences and Systems

 (1-29)

Equation (1-29) tells us that two additional sinusoidal components will be present in y3(n) because of
the system’s nonlinearity, a 2-Hz cosine wave whose amplitude is +1 and a 4-Hz cosine wave having an
amplitude of -1. These spectral components are illustrated in Y3(m) on the right side of Figure 1-13(d).

Figure 1-13 Nonlinear system input-to-output relationships: (a) system block diagram where

y(n) = [x(n)]2; (b) system input and output with a 1-Hz sinewave applied; (c) with a

3-Hz sinewave applied; (d) with the sum of 1-Hz and 3-Hz sinewaves applied.

Notice that, when the sum of the two sinewaves is applied to the nonlinear system, the output
contained sinusoids, Eq. (1-29), that were not present in either of the outputs when the individual
sinewaves alone were applied. Those extra sinusoids were generated by an interaction of the two input

 ① The first term in Eq. (1-29) is cos(2π·nts - 6π·nts) = cos(-4π·nts) = cos(-2π·2·nts). However, because the

cosine function is even, cos(-α) = cos(α), we can express that first term as cos(2π·2·nts).

①

(b)

(c)

(d)

(a)

数字信号处理（第二版）（英文版）·16·16 Understanding Digital Signal Processing, Second Edition

sinusoids due to the squaring operation. That’s nonlinearity; expression (1-20) was not satisfied. (Electrical
engineers recognize this effect of internally generated sinusoids as intermodulation distortion.)
Although nonlinear systems are usually difficult to analyze, they are occasionally used in practice.
References [2], [3], and [4], for example, describe their application in nonlinear digital filters. Again,
expressions (1-20) and (1-21) state that a linear system’s output resulting from a sum of individual
inputs, is the superposition (sum) of the individual outputs. They also stipulate that the output sequence
y1(n) depends only on x1(n) combined with the system characteristics, and not on the other input x2(n),
i.e., there’s no interaction between inputs x1(n) and x2(n) at the output of a linear system.

1.6 Time-Invariant Systems

A time-invariant system is one where a time delay (or shift) in the input sequence causes a equivalent
time delay in the system’s output sequence. Keeping in mind that n is just an indexing variable we use
to keep track of our input and output samples, let’s say a system provides an output y(n) given an input
of x(n), or

 (1-30)

For a system to be time invariant, with a shifted version of the original x(n) input applied, x′(n), the
following applies:

 (1-31)

where k is some integer representing k sample period time delays. For a system to be time invariant,
expression (1-31) must hold true for any integer value of k and any input sequence.

1.6.1 Example of a Time-Invariant System

Let’s look at a simple example of time invariance illustrated in Figure 1-14. Assume that our initial x(n)
input is a unity-amplitude 1-Hz sinewave sequence with a y(n) output, as shown in Figure 1-14(b).
Consider a different input sequence x′(n), where

 (1-32)

Equation (1-32) tells us that the input sequence x′(n) is equal to sequence x(n) shifted four samples to
the left, that is, x′(0) = x(4), x′(1) = x(5), x′(2) = x(6), and so on, as shown on the left of Figure 1-14(c).
The discrete system is time invariant because the y′(n) output sequence is equal to the y(n) sequence
shifted to the left by four samples, or y′(n) = y(n+4). We can see that y′(0) = y(4), y′(1) = y(5), y′(2) = y(6),
and so on, as shown in Figure 1-14(c). For time-invariant systems, the y time shift is equal to the x time
shift.

Some authors succumb to the urge to define a time-invariant system as one whose parameters do
not change with time. That definition is incomplete and can get us in trouble if we’re not careful. We’ll
just stick with the formal definition that a time-invariant system is one where a time shift in an input
sequence results in an equal time shift in the output sequence. By the way, time-invariant systems in the
literature are often called shift-invariant systems.

Chapter 1 Discrete Sequences and Systems ·17·17Chapter 1 Discrete Sequences and Systems

Figure 1-14 Time-invariant system input-to-output relationships: (a) system block dia-

gram where y(n) = -----x(n)/2; (b) system input and output with a 1-Hz sinewave

applied; (c) system input and output when a 1-Hz sinewave, delayed by

four samples, is applied. When x′′′′′(n) = x(n+4), then, y′′′′′(n) = y(n+4).

1.7 The Commutative Property of Linear Time-Invariant Systems

Although we don’t substantiate this fact until we reach Section 6.3, it’s not too early to realize that LTI
systems have a useful commutative property by which their sequential order can be rearranged with no
change in their final output. This situation is shown in Figure 1-15 where two different LTI systems are
configured in series. Swapping the order of two cascaded systems does not alter the final output.
Although the intermediate data sequences f (n) and g(n) will usually not be equal, the two pairs of LTI
systems will have identical y(n) output sequences. This commutative characteristic comes in handy for
designers of digital filters, as we’ll see in Chapter 7.

Figure 1-15 Linear time-invariant (LTI) systems in series: (a) block diagram of two LTI systems;

(b) swapping the order of the two systems does not change the resultant output y(n).

数字信号处理（第二版）（英文版）·18·
18 Understanding Digital Signal Processing, Second Edition

1.8 The Causality Property of Linear Time-Invariant Systems

In a causal discrete-time system, the n0th output sample y[n0] depends only on input samples x[n] for
n < n0 and does not depend on input samples for n > n0.

Thus, if y1[n] and y2[n] are the responses of a causal discrete-time system to the inputs u1[n] and
u2[n], respectively, then

u1[n] = u2[n] for n < N implies also that y1[n] = y2[n] for n < N. (1-33)

Simply speaking, for a causal system, the current output sample does not depend on the future input
samples. It should be pointed out here that the definition of causality given above can be applied only to
discrete-time systems with the same sampling rate for the input and the output.

Example 1-1
Determine the causality of the following discrete-time system.
For a unit step sequence input, that is, for x[n] = u[n], n ≥ 0, the output is given by

y[n] = x[n - 1] + x[n - 2], n ≥ 0.

Solution:
If n < N, y1[n] = u1[n-1] + u1[n-2] and y2[n] = u2[n-1] + u2[n-2] are the responses of the discrete-time
system to the inputs u1[n] and u2[n].
In the latter case, for u1[n] = u2[n], the output y1[n] = y2[n].
Hence the system is causal.

Example 1-2
Determine the causality of the following discrete-time system.
For a unit step sequence input, that is, for x[n] = u[n], n ≥ 0, the output is given by

y[n] = x[n - m].

Solution:
If m > 0, y1[n] = u1[n - m] and y2[n] = u2[n - m] are the responses of the discrete-time system to the
inputs u1[n] and u2[n].
For u1[n] = u2[n], the output y1[n] = y2[n] and hence the system is causal.
On the other hand, if m < 0, (n - m) > n and for u1[n] = u2[n], the output y1[n] is not certainly equal with
y2[n], and hence the system is not causal.

1.9 The Stability Property of Linear Time-Invariant Systems

We define a discrete-time system to be stable if and only if for every bounded-input, the output is also
bounded.

This implies that, if the response to x[n] is the sequence y[n] and if

|x[n]| < ∞ for all values of n, then, |y[n]| < ∞. (1-34)

This type of stability is usually referred to as bounded-input, bounded-output (BIBO) stability.

