PART 1 Background

COMPUTER SYSTEM OVERVIEW

1.1 Basic Elements
1.2 Evolution of the Microprocessor
1.3 Instruction Execution

1.4 Interrupts
Interrupts and the Instruction Cycle
Interrupt Processing
Multiple Interrupts

1.5 The Memory Hierarchy

1.6 Cache Memory
Motivation
Cache Principles
Cache Design

1.7 Direct Memory Access

1.8 Multiprocessor and Multicore Organization
Symmetric Multiprocessors
Multicore Computers

1.9 Recommended Reading
1.10 Key Terms, Review Questions, and Problems

APPENDIX 1A Performance Characteristics of Two-Level Memories
Locality
Operation of Two-Level Memory
Performance

8 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

Describe the basic elements of a computer system and their
interrelationship.

Explain the steps taken by a processor to execute an instruction.

Understand the concept of interrupts and how and why a processor uses
interrupts.

List and describe the levels of a typical computer memory hierarchy.
Explain the basic characteristics of multiprocessor and multicore
organizations.

Discuss the concept of locality and analyze the performance of a multilevel
memory hierarchy.

Understand the operation of a stack and its use to support procedure call
and return.

An operating system (OS) exploits the hardware resources of one or more proces-
sors to provide a set of services to system users. The OS also manages secondary
memory and I/O (input/output) devices on behalf of its users. Accordingly, it is im-
portant to have some understanding of the underlying computer system hardware
before we begin our examination of operating systems.

This chapter provides an overview of computer system hardware. In most

areas, the survey is brief, as it is assumed that the reader is familiar with this subject.
However, several areas are covered in some detail because of their importance to
topics covered later in the book. Further topics are covered in Appendix C.

1.1 BASIC ELEMENTS

At

a top level, a computer consists of processor, memory, and I/O components, with

one or more modules of each type. These components are interconnected in some
fashion to achieve the main function of the computer, which is to execute programs.
Thus, there are four main structural elements:

e Processor: Controls the operation of the computer and performs its data pro-
cessing functions. When there is only one processor, it is often referred to as
the central processing unit (CPU).

° Main memory: Stores data and programs. This memory is typically volatile;
that is, when the computer is shut down, the contents of the memory are lost.
In contrast, the contents of disk memory are retained even when the computer
system is shut down. Main memory is also referred to as real memory or pri-
mary memory.

1.1/ BASIC ELEMENTS 9

CPU Main memory
System . 0
bus . 2
PC MAR : .
Instruction °
Instruction °
IR MBR Instr:]ction
I/O AR °
1/0 BR Do
Data
Data
I/0 module : 2
n—1
o PC = Program counter
o IR = Instruction register
> MAR = Memory address register
Buffers MBR = Memory buffer register

I/0O AR = Input/output address register
I/0 BR = Input/output buffer register

Figure 1.1 Computer Components: Top-Level View

e I/O modules: Move data between the computer and its external environment.
The external environment consists of a variety of devices, including secondary
memory devices (e.g., disks), communications equipment, and terminals.

e System bus: Provides for communication among processors, main memory,
and I/O modules.

Figure 1.1 depicts these top-level components. One of the processor’s func-
tions is to exchange data with memory. For this purpose, it typically makes use of
two internal (to the processor) registers: a memory address register (MAR), which
specifies the address in memory for the next read or write; and a memory buffer reg-
ister (MBR), which contains the data to be written into memory or which receives
the data read from memory. Similarly, an I/O address register (I/OAR) specifies a
particular I/O device. An I/O buffer register (I/OBR) is used for the exchange of
data between an I/O module and the processor.

A memory module consists of a set of locations, defined by sequentially num-
bered addresses. Each location contains a bit pattern that can be interpreted as either

10 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

an instruction or data. An I/O module transfers data from external devices to proces-
sor and memory, and vice versa. It contains internal buffers for temporarily holding
data until they can be sent on.

1.2 EVOLUTION OF THE MICROPROCESSOR

The hardware revolution that brought about desktop and handheld computing was
the invention of the microprocessor, which contained a processor on a single chip.
Though originally much slower than multichip processors, microprocessors have
continually evolved to the point that they are now much faster for most computa-
tions due to the physics involved in moving information around in sub-nanosecond
timeframes.

Not only have microprocessors become the fastest general purpose processors
available, they are now multiprocessors; each chip (called a socket) contains mul-
tiple processors (called cores), each with multiple levels of large memory caches,
and multiple logical processors sharing the execution units of each core. As of 2010,
itis not unusual for even a laptop to have 2 or 4 cores, each with 2 hardware threads,
for a total of 4 or 8 logical processors.

Although processors provide very good performance for most forms of com-
puting, there is increasing demand for numerical computation. Graphical Processing
Units (GPUs) provide efficient computation on arrays of data using Single-
Instruction Multiple Data (SIMD) techniques pioneered in supercomputers. GPUs
are no longer used just for rendering advanced graphics, but they are also used for
general numerical processing, such as physics simulations for games or computations
on large spreadsheets. Simultaneously, the CPUs themselves are gaining the capabil-
ity of operating on arrays of data—with increasingly powerful vector units integrated
into the processor architecture of the x86 and AMD64 families.

Processors and GPUs are not the end of the computational story for the mod-
ern PC. Digital Signal Processors (DSPs) are also present, for dealing with stream-
ing signals—such as audio or video. DSPs used to be embedded in I/O devices, like
modems, but they are now becoming first-class computational devices, especially in
handhelds. Other specialized computational devices (fixed function units) co-exist
with the CPU to support other standard computations, such as encoding/decoding
speech and video (codecs), or providing support for encryption and security.

To satisfy the requirements of handheld devices, the classic microprocessor
is giving way to the System on a Chip (SoC), where not just the CPUs and caches
are on the same chip, but also many of the other components of the system, such as
DSPs, GPUs, I/O devices (such as radios and codecs), and main memory.

1.3 INSTRUCTION EXECUTION

A program to be executed by a processor consists of a set of instructions stored
in memory. In its simplest form, instruction processing consists of two steps: The
processor reads (fetches) instructions from memory one at a time and executes each
instruction. Program execution consists of repeating the process of instruction fetch

1.3 / INSTRUCTION EXECUTION 11

Fetch stage Execute stage

(START) Gistisl utensi > HALT
instruction instruction

Figure 1.2 Basic Instruction Cycle

and instruction execution. Instruction execution may involve several operations and
depends on the nature of the instruction.

The processing required for a single instruction is called an instruction
cycle. Using a simplified two-step description, the instruction cycle is depicted in
Figure 1.2. The two steps are referred to as the fetch stage and the execute stage.
Program execution halts only if the processor is turned off, some sort of unrecover-
able error occurs, or a program instruction that halts the processor is encountered.

At the beginning of each instruction cycle, the processor fetches an instruc-
tion from memory. Typically, the program counter (PC) holds the address of the
next instruction to be fetched. Unless instructed otherwise, the processor always
increments the PC after each instruction fetch so that it will fetch the next instruc-
tion in sequence (i.e., the instruction located at the next higher memory address).
For example, consider a simplified computer in which each instruction occupies one
16-bit word of memory. Assume that the program counter is set to location 300.
The processor will next fetch the instruction at location 300. On succeeding instruc-
tion cycles, it will fetch instructions from locations 301, 302, 303, and so on. This
sequence may be altered, as explained subsequently.

The fetched instruction is loaded into the instruction register (IR). The in-
struction contains bits that specify the action the processor is to take. The processor
interprets the instruction and performs the required action. In general, these actions
fall into four categories:

¢ Processor-memory: Data may be transferred from processor to memory or
from memory to processor.

e Processor-1/0: Data may be transferred to or from a peripheral device by
transferring between the processor and an I/O module.

e Data processing: The processor may perform some arithmetic or logic opera-
tion on data.

e Control: An instruction may specify that the sequence of execution be altered.
For example, the processor may fetch an instruction from location 149, which
specifies that the next instruction be from location 182. The processor sets the
program counter to 182. Thus, on the next fetch stage, the instruction will be
fetched from location 182 rather than 150.

An instruction’s execution may involve a combination of these actions.
Consider a simple example using a hypothetical processor that includes the
characteristics listed in Figure 1.3. The processor contains a single data register,

12 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

0 3 4 15
Opcode | Address

(a) Instruction format

| S | Magnitude

(b) Integer format

Program counter (PC) = Address of instruction
Instruction register (IR) = Instruction being executed
Accumulator (AC) = Temporary storage

(c) Internal CPU registers

0001 = Load AC from memory
0010 = Store AC to memory
0101 = Add to AC from memory

(d) Partial list of opcodes
Figure 1.3 Characteristics of a Hypothetical Machine

called the accumulator (AC). Both instructions and data are 16 bits long, and mem-
ory is organized as a sequence of 16-bit words. The instruction format provides 4
bits for the opcode, allowing as many as 2* = 16 different opcodes (represented by a
single hexadecimal! digit). The opcode defines the operation the processor is to per-
form. With the remaining 12 bits of the instruction format, up to 2'? = 4,096 (4K)
words of memory (denoted by three hexadecimal digits) can be directly addressed.

Figure 1.4 illustrates a partial program execution, showing the relevant por-
tions of memory and processor registers. The program fragment shown adds the
contents of the memory word at address 940 to the contents of the memory word at
address 941 and stores the result in the latter location. Three instructions, which can
be described as three fetch and three execute stages, are required:

1. The PC contains 300, the address of the first instruction. This instruction (the
value 1940 in hexadecimal) is loaded into the IR and the PC is incremented.
Note that this process involves the use of a memory address register (MAR)
and a memory buffer register (MBR). For simplicity, these intermediate regis-
ters are not shown.

2. The first 4 bits (first hexadecimal digit) in the IR indicate that the AC is to be
loaded from memory. The remaining 12 bits (three hexadecimal digits) specify
the address, which is 940.

3. The next instruction (5941) is fetched from location 301 and the PC is
incremented.

A basic refresher on number systems (decimal, binary, hexadecimal) can be found at the Computer
Science Student Resource Site at ComputerScienceStudent.com.

1.4 / INTERRUPTS 13

Fetch stage Execute stage

Memory CPU registers Memory CPU registers
30011 9 40 3 0 0|PC [300[1 9 40 30 1]PC
30159411> AC|301{59 41 000 3|AC
302[2 9 41 1 940/IR[302{29 41 194 0]IR
940(0 0 0 3 940(0 0 0 3

9410 0 0 2 941(0 0 0 2

Step 1 Step 2

Memory CPU registers Memory CPU registers
30011 9 40 30 1|PC [300[1 9 40 3 0 2|PC
301|159 41 000 3/AC|301|59 4 1 000 5[|AC
3022941-\>59411R3022941(5941)IR
940(0 0 0 3 940{0 0 0 3 3+42=5
9410 0 0 2 941(0 0 0 2

Step 3 Step 4

Memory CPU registers Memory CPU registers
300(1 9 40 3 0 2[PC [300[1 9 40 3 0 3]PC
301|159 41 000 5/AC|301|59 41 000 5[AC
30212 9 4 12 9 4 1|IR [302|2 9 4 1 294 1]IR
940[00 0 3 940[00 0 3

941(0 0 0 2 941{0 0 0 5

Step 5 Step 6
Figure 1.4 Example of Program Execution (contents

of memory and registers in hexadecimal)

4. The old contents of the AC and the contents of location 941 are added and the
result is stored in the AC.

5. The next instruction (2941) is fetched from location 302 and the PC is

incremented.

6. The contents of the AC are stored in location 941.

In this example, three instruction cycles, each consisting of a fetch stage and
an execute stage, are needed to add the contents of location 940 to the contents
of 941. With a more complex set of instructions, fewer instruction cycles would be
needed. Most modern processors include instructions that contain more than one
address. Thus the execution stage for a particular instruction may involve more than
one reference to memory. Also, instead of memory references, an instruction may
specify an I/O operation.

1.4 INTERRUPTS

Virtually all computers provide a mechanism by which other modules (I/O, mem-
ory) may interrupt the normal sequencing of the processor. Table 1.1 lists the most
common classes of interrupts.

14 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

Table 1.1 Classes of Interrupts

Program

Generated by some condition that occurs as a result of an instruction execution, such as

arithmetic overflow, division by zero, attempt to execute an illegal machine instruction,
and reference outside a user’s allowed memory space.

Generated by a timer within the processor. This allows the operating system to perform
certain functions on a regular basis.

Generated by an I/0 controller, to signal normal completion of an operation or to
signal a variety of error conditions.

Hardware failure Generated by a failure, such as power failure or memory parity error.

Interrupts are provided primarily as a way to improve processor utilization.
For example, most I/O devices are much slower than the processor. Suppose that
the processor is transferring data to a printer using the instruction cycle scheme of
Figure 1.2. After each write operation, the processor must pause and remain idle
until the printer catches up. The length of this pause may be on the order of many
thousands or even millions of instruction cycles. Clearly, this is a very wasteful use
of the processor.

To give a specific example, consider a PC that operates at 1 GHz, which would
allow roughly 10° instructions per second.> A typical hard disk has a rotational
speed of 7200 revolutions per minute for a half-track rotation time of 4 ms, which is
4 million times slower than the processor.

Figure 1.5a illustrates this state of affairs. The user program performs a series
of WRITE calls interleaved with processing. The solid vertical lines represent seg-
ments of code in a program. Code segments 1, 2, and 3 refer to sequences of instruc-
tions that do not involve I/O. The WRITE calls are to an I/O routine that is a system
utility and that will perform the actual I/O operation. The I/O program consists of
three sections:

e A sequence of instructions, labeled 4 in the figure, to prepare for the actual
I/O operation. This may include copying the data to be output into a special
buffer and preparing the parameters for a device command.

e The actual I/O command. Without the use of interrupts, once this command
is issued, the program must wait for the I/O device to perform the requested
function (or periodically check the status, or poll, the I/O device). The pro-
gram might wait by simply repeatedly performing a test operation to deter-
mine if the I/O operation is done.

e A sequence of instructions, labeled 5 in the figure, to complete the opera-
tion. This may include setting a flag indicating the success or failure of the
operation.

The dashed line represents the path of execution followed by the processor; that
is, this line shows the sequence in which instructions are executed. Thus, after the first

2A discussion of the uses of numerical prefixes, such as giga and tera, is contained in a supporting docu-
ment at the Computer Science Student Resource Site at ComputerScienceStudent.com.

1.4 / INTERRUPTS 15

User /0 User 1/0 User
Program Program Program Program Program Program
N 4.7 N A7 N , ad
/ 1 ¥ 1
O | AN ONNO ! RN ONNO ! ! @
1 /// I, 1 : 1 /// / y + 1 / / l y v
— ¥ : Corggand — VI”/ igmmT o WRITE *]LJ'—— Vo
WRITE e Il : : WRITE l‘” I, Il Command - Command
i AR Y 1 T 1 [T ! l
I N i ® I 1! I i/
1 1 Sd 1 ! 7 1 1/
1 ! /|\ Y 1 ! I I 1
/
1 /I / END \ Q7 : II /I
@ : II /// * ?\\I/\ @ 1 I[Il
1 {0 S< 1 Interrupt
17 14 Interrupt I P
1 ra 1 I;' s_ S~y Handler o Handler
i/ NG FF S i
== \7 — Y 0 e | YT |G
WRITE # WRITE AN iy :
- ! B AN T TSl
: e 7Y Enp L Y &p
7
: IV,// 7 : II II
I 1 /
O | * 9
I ! 74
I : 11,
1y Ly i i/
WRITE WRITE WRITE
(a) No interrupts (b) Interrupts; short I/0 wait (c) Interrupts; long 1/0 wait
x = interrupt occurs during course of execution of user program

Figure 1.5

Program Flow of Control Without and With Interrupts

WRITE instruction is encountered, the user program is interrupted and execution
continues with the I/O program. After the I/O program execution is complete, execu-
tion resumes in the user program immediately following the WRITE instruction.

Because the I/0O operation may take a relatively long time to complete, the I/O
program is hung up waiting for the operation to complete; hence, the user program
is stopped at the point of the WRITE call for some considerable period of time.

Interrupts and the Instruction Cycle

With interrupts, the processor can be engaged in executing other instructions while
an I/O operation is in progress. Consider the flow of control in Figure 1.5b. As be-
fore, the user program reaches a point at which it makes a system call in the form
of a WRITE call. The I/O program that is invoked in this case consists only of the
preparation code and the actual I/O command. After these few instructions have
been executed, control returns to the user program. Meanwhile, the external device
is busy accepting data from computer memory and printing it. This I/O operation is
conducted concurrently with the execution of instructions in the user program.
When the external device becomes ready to be serviced, that is, when it is
ready to accept more data from the processor, the I/O module for that external
device sends an interrupt request signal to the processor. The processor responds by
suspending operation of the current program; branching off to a routine to service

16 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

User program Interrupt handler
]
1 -
2
[] []
[] []
[] (]
Interrupt ——5» '
occurs here i+ 1 <
[]
[]
[]
M

Figure 1.6 Transfer of Control via Interrupts

that particular I/O device, known as an interrupt handler; and resuming the original
execution after the device is serviced. The points at which such interrupts occur are
indicated by ¥ in Figure 1.5b. Note that an interrupt can occur at any point in the
main program, not just at one specific instruction.

For the user program, an interrupt suspends the normal sequence of execu-
tion. When the interrupt processing is completed, execution resumes (Figure 1.6).
Thus, the user program does not have to contain any special code to accommodate
interrupts; the processor and the OS are responsible for suspending the user pro-
gram and then resuming it at the same point.

To accommodate interrupts, an interrupt stage is added to the instruction
cycle, as shown in Figure 1.7 (compare Figure 1.2). In the interrupt stage, the pro-
cessor checks to see if any interrupts have occurred, indicated by the presence of

Fetch stage Execute stage Interrupt stage
< Interrupts
disabled
Check for
(START = »| Fetchnext »| Execute 5| interrupt;
instruction instruction Interrupts | initiate interrupt
enabled handler

(HALT)

Figure 1.7 Instruction Cycle with Interrupts

1.4 / INTERRUPTS 17

Time

HON

concurrent with

processor executing

/O operation;
processor waits

I 1/O operation

concurrent with

/O operation;
processor executing

1/O operation
processor waits

o[ele[elejelelelo)

(b) With interrupts

(4)
L
| ©

©)
ol
L
HON

®

(a) Without interrupts

Figure 1.8 Program Timing: Short I/O Wait

an interrupt signal. If no interrupts are pending, the processor proceeds to the
fetch stage and fetches the next instruction of the current program. If an interrupt
is pending, the processor suspends execution of the current program and executes
an interrupt-handler routine. The interrupt-handler routine is generally part of the
OS. Typically, this routine determines the nature of the interrupt and performs
whatever actions are needed. In the example we have been using, the handler de-
termines which I/O module generated the interrupt and may branch to a program
that will write more data out to that I/O module. When the interrupt-handler rou-
tine is completed, the processor can resume execution of the user program at the
point of interruption.

It is clear that there is some overhead involved in this process. Extra instructions
must be executed (in the interrupt handler) to determine the nature of the interrupt
and to decide on the appropriate action. Nevertheless, because of the relatively large
amount of time that would be wasted by simply waiting on an I/O operation, the pro-
cessor can be employed much more efficiently with the use of interrupts.

To appreciate the gain in efficiency, consider Figure 1.8, which is a timing dia-
gram based on the flow of control in Figures 1.5a and 1.5b. Figures 1.5b and 1.8

18 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

assume that the time required for the I/O operation is relatively short: less than the
time to complete the execution of instructions between write operations in the user
program. The more typical case, especially for a slow device such as a printer, is
that the I/O operation will take much more time than executing a sequence of user
instructions. Figure 1.5¢ indicates this state of affairs. In this case, the user program
reaches the second WRITE call before the I/O operation spawned by the first call is
complete. The result is that the user program is hung up at that point. When the pre-
ceding I/O operation is completed, this new WRITE call may be processed, and a
new I/O operation may be started. Figure 1.9 shows the timing for this situation with
and without the use of interrupts. We can see that there is still a gain in efficiency
because part of the time during which the I/O operation is underway overlaps with
the execution of user instructions.

Time

1/0 operation;
processor waits

1/0 operation
concurrent with
processor executing;
then processor
waits

/0 operation
concurrent with
processor executing;
then processor
waits

1/0 operation;
processor waits

HON
NON
©)
NON
NON
®
()

(b) With interrupts

HON
ﬁ
NON
©)
i
NON
®

(a) Without interrupts

Figure 1.9 Program Timing: Long I/0 Wait

Hardware

1.4 / INTERRUPTS 19

Software
A

Device controller or
other system hardware
issues an interrupt

\

Processor finishes
execution of current
instruction

Save remainder of
process state
information

\

Processor signals
acknowledgment
of interrupt

Process interrupt

\

Processor pushes PSW
and PC onto control
stack

Restore process state
information

Processor loads new
PC value based on
interrupt

Restore old PSW
and PC

Figure 1.10

Interrupt Processing

Simple Interrupt Processing

An interrupt triggers a number of events, both in the processor hardware and in
software. Figure 1.10 shows a typical sequence. When an I/O device completes an
I/0 operation, the following sequence of hardware events occurs:

1. The device issues an interrupt signal to the processor.

2. The processor finishes execution of the current instruction before responding

3.

to the interrupt, as indicated in Figure 1.7.

The processor tests for a pending interrupt request, determines that there is
one, and sends an acknowledgment signal to the device that issued the inter-
rupt. The acknowledgment allows the device to remove its interrupt signal.

The processor next needs to prepare to transfer control to the interrupt rou-
tine. To begin, it saves information needed to resume the current program at
the point of interrupt. The minimum information required is the program sta-
tus word® (PSW) and the location of the next instruction to be executed, which

3The PSW contains status information about the currently running process, including memory usage
information, condition codes, and other status information, such as an interrupt enable/disable bit and a
kernel/user mode bit. See Appendix C for further discussion.

20 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

is contained in the program counter (PC). These can be pushed onto a control
stack (see Appendix P).

5. The processor then loads the program counter with the entry location of the
interrupt-handling routine that will respond to this interrupt. Depending on
the computer architecture and OS design, there may be a single program, one
for each type of interrupt, or one for each device and each type of interrupt.
If there is more than one interrupt-handling routine, the processor must de-
termine which one to invoke. This information may have been included in
the original interrupt signal, or the processor may have to issue a request to
the device that issued the interrupt to get a response that contains the needed
information.

Once the program counter has been loaded, the processor proceeds to the
next instruction cycle, which begins with an instruction fetch. Because the instruc-
tion fetch is determined by the contents of the program counter, control is trans-
ferred to the interrupt-handler program. The execution of this program results in
the following operations:

6. At this point, the program counter and PSW relating to the interrupted
program have been saved on the control stack. However, there is other in-
formation that is considered part of the state of the executing program. In
particular, the contents of the processor registers need to be saved, because
these registers may be used by the interrupt handler. So all of these values,
plus any other state information, need to be saved. Typically, the interrupt
handler will begin by saving the contents of all registers on the stack. Other
state information that must be saved is discussed in Chapter 3. Figure 1.11a
shows a simple example. In this case, a user program is interrupted after the
instruction at location N. The contents of all of the registers plus the address
of the next instruction (N + 1), a total of M words, are pushed onto the con-
trol stack. The stack pointer is updated to point to the new top of stack, and
the program counter is updated to point to the beginning of the interrupt
service routine.

7. The interrupt handler may now proceed to process the interrupt. This includes
an examination of status information relating to the I/O operation or other
event that caused an interrupt. It may also involve sending additional com-
mands or acknowledgments to the I/O device.

8. When interrupt processing is complete, the saved register values are retrieved
from the stack and restored to the registers (e.g., see Figure 1.11b).

9. The final act is to restore the PSW and program counter values from the stack.
As a result, the next instruction to be executed will be from the previously
interrupted program.

It is important to save all of the state information about the interrupted pro-
gram for later resumption. This is because the interrupt is not a routine called from
the program. Rather, the interrupt can occur at any time and therefore at any point
in the execution of a user program. Its occurrence is unpredictable.

1.4 / INTERRUPTS 21

T—M T—-M
y N+ 1
Control Control 1
stack . ’ stack
T T f
YiLid
Program Program
counter counter
Y |_Start Y |_Start 1
Interrupt General Interrupt General
service registers service registers
routine routine
Y + L |Return Y + L [Return
Stack Stack
pointer pointer
Processor Processor
T—M T
N 5 N N
N+ 1 User’s N+l User’s
program program
Main Main
memory memory
(a) Interrupt occurs after instruction (b) Return from interrupt

at location N

Figure 1.11 Changes in Memory and Registers for an Interrupt

Multiple Interrupts

So far, we have discussed the occurrence of a single interrupt. Suppose, however, that
one or more interrupts can occur while an interrupt is being processed. For example,
a program may be receiving data from a communications line and printing results at
the same time. The printer will generate an interrupt every time that it completes a
print operation. The communication line controller will generate an interrupt every
time a unit of data arrives. The unit could either be a single character or a block,
depending on the nature of the communications discipline. In any case, it is possible
for a communications interrupt to occur while a printer interrupt is being processed.

22 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

Two approaches can be taken to dealing with multiple interrupts. The first
is to disable interrupts while an interrupt is being processed. A disabled interrupt
simply means that the processor ignores any new interrupt request signal. If an
interrupt occurs during this time, it generally remains pending and will be checked
by the processor after the processor has reenabled interrupts. Thus, if an interrupt
occurs when a user program is executing, then interrupts are disabled immediately.
After the interrupt-handler routine completes, interrupts are reenabled before re-
suming the user program, and the processor checks to see if additional interrupts
have occurred. This approach is simple, as interrupts are handled in strict sequen-
tial order (Figure 1.12a).

Interrupt
User program handler X
: / g
1 E
;%\\:
= Interrupt
= handler Y
= =~
= ~C
(a) Sequential interrupt processing
Interrupt
User program handler X
/ 7=
\\:
Interrupt
handler Y

IIIIIIIIIIIIIIIIIIIIIIIIIfI\IIIIIIII

4IIIIIIIIII’

(b) Nested interrupt processing

Figure 1.12 Transfer of Control with Multiple Interrupts

1.4 / INTERRUPTS 23

The drawback to the preceding approach is that it does not take into account
relative priority or time-critical needs. For example, when input arrives from the com-
munications line, it may need to be absorbed rapidly to make room for more input. If
the first batch of input has not been processed before the second batch arrives, data
may be lost because the buffer on the I/O device may fill and overflow.

A second approach is to define priorities for interrupts and to allow an inter-
rupt of higher priority to cause a lower-priority interrupt handler to be interrupted
(Figure 1.12b). As an example of this second approach, consider a system with
three I/O devices: a printer, a disk, and a communications line, with increasing
priorities of 2, 4, and 5, respectively. Figure 1.13 illustrates a possible sequence. A
user program begins at t = 0. At ¢t = 10, a printer interrupt occurs; user informa-
tion is placed on the control stack and execution continues at the printer interrupt
service routine (ISR). While this routine is still executing, at ¢ = 15 a communica-
tions interrupt occurs. Because the communications line has higher priority than
the printer, the interrupt request is honored. The printer ISR is interrupted, its
state is pushed onto the stack, and execution continues at the communications
ISR. While this routine is executing, a disk interrupt occurs (¢t = 20). Because this
interrupt is of lower priority, it is simply held, and the communications ISR runs
to completion.

When the communications ISR is complete (¢ = 25), the previous processor
state is restored, which is the execution of the printer ISR. However, before even a
single instruction in that routine can be executed, the processor honors the higher-
priority disk interrupt and transfers control to the disk ISR. Only when that rou-
tine is complete (¢ = 35) is the printer ISR resumed. When that routine completes
(t = 40), control finally returns to the user program.

Printer Communication
interrupt service routine interrupt service routine

L7

User program

N\

AN
7\

,
I T I I B I

/.

Disk

7 =
25 . . .
1nterrupt service routine

S

/

S

{

Figure 1.13 Example Time Sequence of Multiple Interrupts

24 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

1.5 THE MEMORY HIERARCHY

The design constraints on a computer’s memory can be summed up by three ques-
tions: How much? How fast? How expensive?

The question of how much is somewhat open ended. If the capacity is there,
applications will likely be developed to use it. The question of how fast is, in a sense,
easier to answer. To achieve greatest performance, the memory must be able to
keep up with the processor. That is, as the processor is executing instructions, we
would not want it to have to pause waiting for instructions or operands. The final
question must also be considered. For a practical system, the cost of memory must
be reasonable in relationship to other components.

As might be expected, there is a trade-off among the three key characteristics
of memory: namely, capacity, access time, and cost. A variety of technologies are
used to implement memory systems, and across this spectrum of technologies, the
following relationships hold:

e Faster access time, greater cost per bit
e Greater capacity, smaller cost per bit
e Greater capacity, slower access speed

The dilemma facing the designer is clear. The designer would like to use mem-
ory technologies that provide for large-capacity memory, both because the capacity
is needed and because the cost per bit is low. However, to meet performance re-
quirements, the designer needs to use expensive, relatively lower-capacity memo-
ries with fast access times.

The way out of this dilemma is to not rely on a single memory component or
technology, but to employ a memory hierarchy. A typical hierarchy is illustrated in
Figure 1.14. As one goes down the hierarchy, the following occur:

a. Decreasing cost per bit
b. Increasing capacity

c¢. Increasing access time
d

. Decreasing frequency of access to the memory by the processor

Thus, smaller, more expensive, faster memories are supplemented by larger,
cheaper, slower memories. The key to the success of this organization is the de-
creasing frequency of access at lower levels. We will examine this concept in greater
detail later in this chapter, when we discuss the cache, and when we discuss virtual
memory later in this book. A brief explanation is provided at this point.

Suppose that the processor has access to two levels of memory. Level 1 contains
1000 bytes and has an access time of 0.1 ps; level 2 contains 100,000 bytes and has an
access time of 1 ps. Assume that if a byte to be accessed is in level 1, then the proces-
sor accesses it directly. If it is in level 2, then the byte is first transferred to level 1 and
then accessed by the processor. For simplicity, we ignore the time required for the
processor to determine whether the byte is in level 1 or level 2. Figure 1.15 shows the
general shape of the curve that models this situation. The figure shows the average
access time to a two-level memory as a function of the hit ratio H, where H is defined

