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Part 1  Ray Optics 

In this part, we treat light beams as rays that propagate along straight lines, except at interfaces 
between dissimilar materials, where the rays may be bent or refracted. This approach, which had 
been assumed to be completely accurate before the discovery of the wave nature of light, leads to a 
great many useful results regarding lens optics and optical instruments. 

1.1  Refraction and Reflection 

1.1.1  Refraction 

When a light ray strikes a smooth interface between two 
transparent media at an angle, it is refracted. Each medium may 
be characterized by an index of refraction n, which is a useful 
parameter for describing the sharpness of the refraction at the 
interface. The index of refraction of air (more precisely, of free 
space) is arbitrarily taken to be one, n is most conveniently 
regarded as a parameter whose value is determined by 
experiment. We know now that the physical significance of n is 
that the ratio of the velocity of light in vacuo to that in the 
medium. 

Suppose that the ray is incident on the interface, as shown in Fig.1.1. It is refracted in such a 
way that 

inin ′′= sinsin                            (1.1) 
no matter what the inclination of the incident ray to the surface, n is the index of refraction of the 
first medium, n′  that of the second. The angle of incidence i is the angle between the incident ray 
and the normal to the surface; the angle of refraction i′  is the angle between the refracted ray and 
the normal. 

1.1.2  Index of Refraction 

Most common optical materials are transparent in the visible region of the spectrum, whose 
wavelength ranges from 400 to 700nm. They exhibit strong absorption at shorter wavelengths, 
usually 200nm and below. 

The refractive index of a given material is not independent of wavelength, but generally 
increases slightly with decreasing wavelength (Near the absorption edge at 200 nm, the index of 
glass increases sharply). This phenomenon is known as dispersion. Dispersion can be used to 

 

Fig.1.1  Refraction at an interface 
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display a spectrum with a prism; it also gives rise to unwanted variations of lens properties with 
wavelength. Table 1.1 gives typical index of refraction of several materials. 

Tab.1.1  Index of refraction of several materials 

Material Index of refraction Material Index of refraction 

air 1.0003 sodium chloride 1.54 

water 1.33 light flint glass 1.57 

magnesium fluoride 1.38 Sapphire 1.77 

vitreous silica 1.46 extra-dense flint glass 1.73 

Pyrex glass 1.47 carbon disulfide 1.62 

Methanol 1.33 zinc sulfide (thin film) 2.3 

xylene 1.50 medium flint glass 1.63 

ethanol 1.36 titanium dioxide (thin film) 2.4～2.9 

crown glass 1.52 heaviest flint glass 1.89 

benzene 1.50 Canada balsam (center) 1.53 

Optical glasses are generally specified both by index n and by a quantity known as dispersion ν,  
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The subscripts F, D and C refer to the indexes at certain short, middle and long wavelengths (blue, 
yellow, red). 

1.1.3  Reflection 

Certain highly polished metal surfaces and other interfaces may reflect all or nearly all of the 
light falling on the surface. In addition, ordinary, transparent glasses reflect a few percent of the 
incident light and transmit the rest. 

The angle of incidence is i and the angle of reflection i′ . 
Experiment shows that the angles of incidence and reflection are 
equal, except in a very few peculiar cases, as shown in Fig.1.2.  

We shall later adopt the convention that i is positive; that is, if 
the acute angle opens counterclockwise from the normal to the ray, 
i is positive. The sign of i′  is clearly opposite to that of i. We 
therefore write the law of reflection as 

ii −=′                                  (1.3) 

1.1.4  Total Internal Reflection 

Here we consider a ray that strikes an interface from the high-index side, say, from glass to air 
(not air to glass). This is known as internal reflection. The law of refraction shows that the incident 
ray is in this case bent away from the normal when it crosses the interface, as shown in Fig.1.3. 

 

Fig.1.2  Reflection at an interface 
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Thus, there will be some angle of incidence for which the 
refracted ray will travel just parallel to the interface. In this 
case, °=′ 90i , so the law of refraction becomes  

            sin sin 90cn i n′=              (1.4) 

where ic is known as the critical angle. Since sin 90 =1, 
                  nnic /sin ′=                 (1.5) 

If i exceeds ic, then nsin i > n′ , and the law of refraction 
demands that sin i′  exceed 1. Because this is impossible, we can conclude only that there can be no 
refracted ray in such cases. The light cannot simply vanish, so we are not surprised that it must be 
wholly reflected; this is indeed the case. The phenomenon is known as total internal reflection; it 
occurs whenever 

)/arcsin( nni ′>                              (1.6) 

The reflected light, of course, obeys the law of reflection. 
For a typical glass-air interface, n =1.5, the critical angle is about 42°. Glass prisms that 

exhibit total reflection are therefore commonly used as mirrors with angles of incidence of about 45°. 

1.1.5  Reflecting Prisms 

There are different types of reflecting prism. The most common are prisms whose cross 
sections are right isosceles triangles. One advantage of a prism over a metal-coated mirror is that its 
reflectance is nearly 100% if the surfaces normal to 
the light are antireflection coated. Further, the 
prism’s properties do not change as the prism ages, 
whereas metallic mirrors are subject to oxidation and 
are relatively easy to scratch. A glass prism is 
sufficiently durable that it can withstand all but the 
most intense laser beams. Fig.1.4 shows a prism 
being used in place of a plane mirror. 

In imaging-forming systems, these prisms must be used in collimated light beams to avoid 
introducing defects into the optical image. 

1.2  Imaging 

1.2.1  Spherical Surfaces 

Because a simple lens consists of a piece of glass with, in general, two spherical surfaces, we 
will find it necessary to examine some of the properties of a single, spherical refracting surface. We 
will for brevity call such a surface, as shown in Fig.1.5, a “len”. Two of these form a lens. To avoid 
confusion, we will always place “len” in quotes. 

 

Fig.1.3  Refraction near the critical angle

Fig.1.4  Reflecting prisms 
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Fig.1.5  Spherical refracting surface 

We are interested in the imaging property of the ‘len”. We consider a bright point A and define 
the axis along the line AC, where C is the center of the spherical surface. We examine a particular ray 
AP that strikes the “len” at P. We shall be interested in the point A′  where this ray intersects the axis. 

Before proceeding any further, we must adopt a sign convention. The choice of convention is, 
of course, arbitrary, but once we choose a convention, we shall have to stick with it. The convention 
we adopt appears, at first, quite complicated. We choose it at least in part because it is universally 
applicable; with it we will not need to derive a special convention for spherical mirrors. 

To begin, imagine a set of Cartesian coordinate axes centered at O. Distances are measured 
from O. Distances measured from O to the right are positive; those measured from O to the left are 
negative. Thus, for example, AO ′  and OC are positive, whereas OA is negative. Similarly, distances 
measured above the axis are positive; those below are negative. This is our first sign convention. 

We now adopt a convention for the signs of angles such as OAP or PAO ′ . We determine their 
signs by trigonometry. For example, the tangent of angle OAP is approximately 

tanOAP ≈ y/OA                              (1.7) 
where y is the distance indicated between P and the axis. Our previous convention shows that y is 
positive, and OA, negative. Thus, tan OAP is negative and so is OAP itself. Similarly, PAO ′  and 
OCP are positive. 

This is our second sign convention. An equivalent statement is that angle PAO ′  (for example) 
is positive if it opens clockwise from the axis, or negative otherwise. It is probably simplest, 
however, merely to remember that angle OAP is negative as drawn in Fig.1.5. 

Finally, we deal with angles of incidence and refraction, such as angle ACP ′ . It is most 
convenient to define ACP ′  to be positive as shown in Fig.1.5. The angle of incidence or refraction 
is positive if it opens counterclockwise from the normal (which is, in this case, the radius of the 
spherical surface）. 

Unfortunately, when the last convention is expressed in this way, the statement differs from 
that which refers to angles (such as OAP) formed by a ray crossing the axis. It is best to learn the 
sign convention by remembering the signs of all of the important angles in Fig.1.5. Only angle OAP 
is negative. 

Let us now assign symbols to the more important quantities in Fig.1.5. The point A′  is located a 
distance l′  to the right of O, and the ray intersects the axis at A′  with angle u′ . The radius R through the 
point P makes angle α with the axis. The angles of incidence and refraction are i and i′ , respectively. 

We must be careful of the signs of OA and angle OAP, both of which are negative according to 
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our sign convention. This is indicated in Fig.1.5 with parenthetical minus signs. We shall later find 
it necessary, after a derivation based on geometry alone, to go through our formulas and change the 
signs of all quantities that are algebraically negative. This is so because our sign convention is not 
used in ordinary geometry. To make our formulas both algebraically and numerically correct, we 
must introduce our sign convention, which we do as indicated, by changing signs appropriately.  

1.2.2  Object-Image Relationship 

We now attempt to find a relationship between the quantities l and l′  for a given geometry. 
First, we relate angle u and i to angle α. The three angles in triangle PAC are u, α and π−i. Because 
the sum of these angles must be π, we have 

   π=−π++ )( iu α                             (1.8) 

 or                                    ui +=α                               (1.9) 
Similarly                              ui ′−=′ α                              (1.10) 

At this point, it is convenient to make the paraxial approximation, namely, the approximation 
that the ray AP remains sufficiently close to the axis that angles u, u′ , i and i′  are so small that 
their sines or tangents can be replaced by their arguments; that is 

     θθθ == tansin                           (1.11) 
where θ is measured in radians. 

It is difficult to draw rays that nearly coincide with the axis, so we redraw Fig.1.5 by 
expanding the vertical axis a great amount, leaving the horizontal axis intact. The vertical axis has 
been stretched so much that the surface looks like a plane. In addition, because only one axis has 
been expanded, all angles are greatly distorted and can be discussed only in terms of their tangents. 
Thus, for example, 

lyu /=                               (1.12)  
and                                    lyu ′=′ /                              (1.13) 

in paraxial approximation. Note also that large angles are distorted. Although the radius is normal to 
the surface, it does not look normal in the paraxial approximation. 

To return to the problem at hand, the law of refraction is 

inni ′′=                                (1.14) 
in paraxial approximation, from which we write 

)()( unun ′−′=+ αα                           (1.15) 

Because OC=R, we write α as 
Ry /=α                                (1.16) 

The last equation therefore becomes 
y y y yn n
R l R l

⎛ ⎞ ⎛ ⎞′+ = −⎜ ⎟ ⎜ ⎟′⎝ ⎠ ⎝ ⎠
                          (1.17) 

A factor of y is common to every term and therefore cancels. We rewrite this relation as 

R
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                              (1.18) 
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At this point, we have made no mention of the sign convention. We derived the proceeding 
equation on the basis of geometry alone. According to our sign convention, all of the terms in the 
equation are positive, except l, which is negative. To make the equation algebraically correct, we 
must, therefore, change the sign of the term containing l. This change alters the equation to 
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                              (1.19) 

which we refer to as the “len” equation. 
There is no dependence on y in the “len” equation. Thus, in paraxial approximation, every ray 

leaving A (and striking the surface) crosses the axis at A′ . We therefore refer to A′  as the image of 
A. A and A′  are called conjugate points, and the object distance l and image distance l′  are called 
conjugates.  

Had we not made the paraxial approximation, the y dependence of the image point would not 
have vanished. Rays that struck the lens at large values of y would not cross the axis precisely at 
A′ . The dependence on y is relatively small, so we would still refer to A′  as the image point. We 

say that the image suffers from aberrations if all of the geometrical rays do not cross the axis within 
a specified distance of A′ . 

1.2.3  Use of the Sign Conventions 

A word of warning with regard to the signs in algebraic expression: Because of the sign 
convention adopted here, derivations based solely on geometry will not necessarily result in the 
correct sign for a given term. There are two ways to correct this defect. The first, to carry a minus 
sign before the symbol of each negative quantity, is too cumbersome and confusing for general use. 
Thus, we adopt the second, which is to go through the final formula and change the sign of each 
negative quantity. This procedure has already been adopted in connection with the “len” equation 
and is necessary, as noted, to make the formula algebraically correct. It is important, though, not to 
change the signs until the final step, lest some signs be altered twice. 

1.2.4  Lens Equation 

A thin lens consists merely of two successive spherical refracting surfaces with a very small 
separation between them. Fig.1.6 shows a thin lens in air. The index of the lens is n. The two 
refracting surfaces have radii R1 and R2, both of which are drawn positive. 

We can derive an equation that relates the object distance l and the image distance l′  by 
considering the behavior of the two surfaces separately. The first surface alone would project an 
image of point A to a point 1A′ . If 1A′  is located at a distance 1l′  to the right of the first surface, the 

“len” equation shows that, in paraxial approximation, 

11
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′
                               (1.20) 

because n is the index of the glass (second medium) and 1, the index of the air. 
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Fig.1.6  Thin lens 

The ray does not ever reach 1A′ , because it is intercepted by the second surface. The second 
surface, however, behaves as if an object were located at 1A′ . The object distance is 1l′ , if we 

neglect the thickness of the lens. In applying the “len” equation to the second surface, we must 
realize that the ray travels across the interface from glass to air. Thus n is the index of the first 
medium and 1, that of the second. The final image point A′  is also the image projected by the lens 
as a whole. If we call the corresponding image distance l′ , then the “len” equation yields 
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                             (1.21) 

for the second surface. 
If we add the last two equations algebraically, we find that 

1 2

1 1 1 1( 1)n
l l R R

⎛ ⎞− = − −⎜ ⎟′ ⎝ ⎠
                         (1.22) 

which is known as the lens-maker’s formula. The lens-maker's formula was derived from the “len” 
equation by algebra alone. There are no signs to change because that step was included in the 
derivation of the “len” equation. 

We may define a quantity f ′  whose reciprocal is equal to the right-hand side of the lens-

maker’s formula, 

1 2

1 1 1( 1)n
f R R

⎛ ⎞= − −⎜ ⎟′ ⎝ ⎠
                         (1.23) 

The lens-maker’s formula may then be written as 

fll ′
=−

′
111                              (1.24) 

where f ′  is the focal length of the lens. We call this equation the lens equation. 
We may see the significance of f ′  in the following way. If the object is infinitely distant from 

the lens, then l = −∞. The lens equation then shows that the image distance is equal to f ′ . If the 

object is located along the axis of the lens, the image also falls on the axis. We call the image point 
in this case the secondary focal point F ′ . Note that any ray that travels parallel to the axis is 
directed by the lens through F ′ , an observation that we will later find particularly useful. 

We define the primary focal point F in a similar way. The primary focal length f is the object 
distance for which ∞=′l . Thus, the lens equation shows that 

ff −=′                                 (1.25) 

the primary and secondary focal lengths have equal magnitudes. Any ray that passes through F will 
be directed by the lens parallel to the axis. 

Finally, we note that, in the general case, a lens may have different media on opposite sides. In 
this case, the lens equation may be shown to be 
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where n and n′  are the indices in the first and second media, respectively. The primary and 
secondary focal lengths are not equal, but are related by 

n
n

f
f ′

−=
′

                                (1.27) 

1.2.5  Classification of Lenses and Images 

A positive lens is a lens that will cause a bundle of parallel rays to converge to a point. Its secondary 
focal point lies to the right of the lens and f ′  is therefore positive. It may be regarded as a lens that is  

capable of projecting an image of a relatively distant object on a screen. An image that can be projected 
on a screen is called a real image. In general, a positive lens projects a real, inverted image of any object 
located to the left of its primary focal point F. When an object is located at F, the image is projected to ∞. 
The lens is not strong enough to project an image when the object is inside F. In that case, an erect image 
appears to lie behind the lens and is known as a virtual image. 

A positive lens need not have two convex surfaces. It may have the meniscus shape of Fig.1.6. 
If the lens is thickest in the middle, the lens-maker’s formula will show it to be a positive lens.  

A negative lens has its secondary focal point located to the left. Its secondary focal length f ′   

is negative, and it cannot project a real image of a real object. Rather, it displays an erect, virtual 
image of such an object. In only one instance can a negative lens display a real image. This is the 
case when a positive lens projects a real image that is intercepted by a negative lens located to the 
left of the image plane. Because the rays are cut off by the negative lens, the real image never 
appears, but behaves as a virtual object projected by the negative lens. 

Like a positive lens, a negative lens need not be concave on both surfaces, but may be a meniscus. 
If the lens is thinnest in the center, f ′  will prove to be negative and the lens, also negative. 

1.2.6  Spherical Mirrors 

Our formalism allows mirror optics to be developed as a special case of lens optics. We notice 
first that the law of reflection ii −=′  can also be written 

ii sin1sin)1( =′−                               (1.28) 

which is precisely analogous to the law of refraction, with 1−=′n . We may therefore regard a 
mirror as a single refracting surface, across which the index changes from +1 to −1. It is left as a 
problem to apply the “len” equation to this case. We find that the focal length of a mirror is 

2/Rf =′                                 (1.29) 

where R is the radius of curvature. In addition, the focal points F and F ′  coincide. The formula that 
relates the conjugates for a curved-mirror system is  

Rll
211

=+
′

                                (1.30) 

Mirrors are usually classified as concave and convex. A concave mirror usually projects a real, 
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inverted image, whereas a convex mirror forms an erect, virtual image. 

1.2.7  Aberrations 

The aberrations of simple, single-element lenses can be quite severe when the lens is 
comparatively large (with respect to image or object distance) or when the object is located far from 
the lens axis. When a simple lens is incapable of performing a certain task, it will be necessary to 
employ a lens, such as a camera lens, whose aberrations have been largely corrected. For specially 
demanding functions, special lenses may have to be designed and built. 

All real lenses made from spherical surfaces may display spherical aberration. Additionally, if 
the object point is distant from the axis of the lens, or off-axis, the image may display other 
aberrations, such as astigmatism, coma, distortion, and field curvature. Furthermore, the index of 
refraction of the lens is a function of wavelength, so its focal length varies slightly with wavelength; 
the resulting aberration is called chromatic aberration. 

Spherical aberration appears both on the axis and off the axis, and does not depend on the 
distance off-axis. Astigmatism occurs because an off-axis bundle of rays strikes the lens 
asymmetrically. This asymmetry causes a pair of line images to appear: one behind the plane of best 
focus and the other in front of it. Coma gives rise to a cometlike image; the head of the comet is the 
paraxial image point, and the aberration manifests itself as the tail. The tail points away from the 
axis of the lens and is 3 times longer than its wide. The length of the comatic image, from the 
paraxial image point to the end of the tail, increases in proportion to the square of the lens diameter 
and to the distance of the image point from the axis of the lens. The image projected by a lens does 
not truly lie on a plane but rather on a curved surface, even if other aberrations are zero. This 
aberration is called field curvature. If the magnification is function of the distance of an image point 
from the axis, then the image will not be rectilinear. The resulting aberration is called distortion.  

Aberrations may be reduced by adjust the radii of the curvature of lens elements so that, for 
example, angles of incidence are minimized; this process is sometimes called bending the lens. 
Astigmatism, however, is only weakly influenced by bending the elements. Similarly, one 
aberration can sometimes be balanced against another. For example, spherical aberration can be 
partially compensated by moving the image plane from the paraxial image plane to the waist, that is, 
by compensating spherical aberration by defocusing. Similarly, coma, distortion, and astigmatism 
can be reduced by adjusting the axis position of the aperture stop. 

Words and Expressions 

a bundle of    一束 
aberration    像差 
acute       （尖）锐的，锐角的 
algebra /algebraically  代数/用代数的方法 
all but     几乎 
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antireflection    减反射，增透 
applicable    可适用的，能应用的，合适的，适当的 
approach     方法，路径 
arbitrarily     人为地 
astigmatism    像散 
asymmetry    非对称性 
be analogous to   与……类似 
be subject to     常遭受 
Cartesian coordinate   笛卡儿坐标系 
capable        能干的，能胜任的 
chromatic aberration  色差 
clockwise     顺时针方向的 
collimated     准直 
coma     彗差 
cometlike     彗星状的 
concave     凹的 
conjugate points   共轭点 
convention     习惯，公约，协定 
convex     凸的 
counterclockwise   逆时针方向的 
critical angle     临界角 
cross section    横截面 
cumbersome     麻烦的，不方便的 
defect     缺点，缺陷，瑕疵，损伤 
derivations     引出 
dispersion    色散 
dissimilar        不相似的 
distortion     畸变 
durable      耐久用的，经久的，坚固的 
erect image    正立像 
exhibit     呈现，陈列，展出 
field curvature    场曲  
formalism    体系 
geometry     几何学 
give rise to     引起，产生，导致 
go through    通过 
in connection with    与……有关，关于 
incident     入射的 
inclination    倾斜（角），偏角，倾向 
index of refraction    折射率 
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indices      index 的复数 
infinitely     无穷，无限 
intact     完整的，原封不动的 
intense     强烈的 
intercept     截取，拦截，相交，折射 
intersect     相交，贯穿 
invert image     倒立的像 
isosceles     等腰 
lest      以免 
magnification    放大率 
magnitude    数量级 
medium     介质 
meniscus     弯月形 
metallic     金属(制)的 
numerically    在数值上 
oxidation     氧化 
parallel     平行的，类似的 
parameter     参数 
parenthetical    括号中的 
parenthetical    附加的 
peculiar      特殊的 
polish     抛光，擦亮 
primary focal point   主焦点 
prism     棱镜 
propagate     传播 
property         特性，特征 
quote     引号 
radius     半径 
rather     相反地，反而，倒不如说（在句首，或作插入语，其前通常 

是否定句） 
ratio      比，比值 
real image    实像 
reciprocal     倒数 
rectilinear     直线运动的 
reflection     反射 
refraction     折射 
respectively     分别地，各自地 
scratch      刮伤，擦伤 
secondary focal point   副焦点 
sharpness     锐度 
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single-element lenses   简单透镜 
spectrum     谱，光谱 
spherical aberration   球差 
subscript     下标记 
successive     连续的，逐次的，递次的 
aperture stop    孔径光阑 
paraxial approximation  傍轴近似 
tangent     切线 
transparent    透明的，半透明的 
trigonometry     三角法 
universally     一般地，普遍地 
vacuo       （拉丁语）真空 
vanish     消失，消散 
virtual image     虚像 
with regard to    关于，论及，对于，就……而言 
withstand     抵抗，经得起，经受住 

Grammar  专业英语翻译方法（一）：英汉句法对比的总结 

英语： 

1．主、谓结构严明，动作行为都有主语； 
2．多被动语态； 
3．介词繁多，名词亦多，应用广泛； 
4．复合句多用“形合法”，根据主、宾、定、状等语法和句法的关系与短语组合成句

子，繁而不乱； 
5．语序灵活多变，纵横交错，重点突出，结构严谨，主次分明； 
6．属综合性语言，着重词形、人称、时态、语态、语气的变化； 
7．句法结构复杂，多长句。 

汉语： 

1．主、谓结构往往不全，常见无主语句或无人称句； 
2．很少用被动语态； 
3．多用动词，少用介词； 
4．复合句多用“意合法”，句子成分很少用连词，根据事理演变或发展过程和逻辑关

系，靠语意串联，承上启下，一气呵成； 
5．语序自然，相映成趣，结构灵活，词句简洁，有如修竹，节节有序； 
6．属分析性语言，根本无词形变化，重意义而不重形态； 
7．句法自然，注意修辞，多简单句型。 
 




