Part1 Ray Optics

In this part, we treat light beams as rays that propagate along straight lines, except at interfaces
between dissimilar materials, where the rays may be bent or refracted. This approach, which had
been assumed to be completely accurate before the discovery of the wave nature of light, leads to a
great many useful results regarding lens optics and optical instruments.

1.1 Refraction and Reflection

1.1.1 Refraction

When a light ray strikes a smooth interface between two
transparent media at an angle, it is refracted. Each medium may
be characterized by an index of refraction n, which is a useful

parameter for describing the sharpness of the refraction at the

interface. The index of refraction of air (more precisely, of free

space) is arbitrarily taken to be one, n is most conveniently

regarded as a parameter whose value is determined by
experiment. We know now that the physical significance of n is  Fig.1.1 Refraction at an interface
that the ratio of the velocity of light in vacuo to that in the
medium.

Suppose that the ray is incident on the interface, as shown in Fig.1.1. It is refracted in such a
way that

nsini =n'sini’ (1.1

no matter what the inclination of the incident ray to the surface, n is the index of refraction of the
first medium, »' that of the second. The angle of incidence i is the angle between the incident ray
and the normal to the surface; the angle of refraction i’ is the angle between the refracted ray and

the normal.

1.1.2 Index of Refraction

Most common optical materials are transparent in the visible region of the spectrum, whose
wavelength ranges from 400 to 700nm. They exhibit strong absorption at shorter wavelengths,
usually 200nm and below.

The refractive index of a given material is not independent of wavelength, but generally
increases slightly with decreasing wavelength (Near the absorption edge at 200 nm, the index of

glass increases sharply). This phenomenon is known as dispersion. Dispersion can be used to
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wavelength. Table 1.1 gives typical index of refraction of several materials.

Tab.1.1 Index of refraction of several materials
Material Index of refraction Material Index of refraction

air 1.0003 sodium chloride 1.54
water 1.33 light flint glass 1.57
magnesium fluoride 1.38 Sapphire 1.77
vitreous silica 1.46 extra-dense flint glass 1.73
Pyrex glass 1.47 carbon disulfide 1.62
Methanol 1.33 zinc sulfide (thin film) 2.3
xylene 1.50 medium flint glass 1.63
ethanol 1.36 titanium dioxide (thin film) 24~29
crown glass 1.52 heaviest flint glass 1.89
benzene 1.50 Canada balsam (center) 1.53

display a spectrum with a prism; it also gives rise to unwanted variations of lens properties with

Optical glasses are generally specified both by index » and by a quantity known as dispersion v,
y=lr e (1.2)
np—1
The subscripts F, D and C refer to the indexes at certain short, middle and long wavelengths (blue,
yellow, red).

1.1.3 Reflection

Certain highly polished metal surfaces and other interfaces may reflect all or nearly all of the
light falling on the surface. In addition, ordinary, transparent glasses reflect a few percent of the
incident light and transmit the rest.

The angle of incidence is i and the angle of reflection i'.
Experiment shows that the angles of incidence and reflection are

equal, except in a very few peculiar cases, as shown in Fig.1.2.

We shall later adopt the convention that i is positive; that is, if

the acute angle opens counterclockwise from the normal to the ray, Fig.12 Reflection at an interface

i is positive. The sign of i’ is clearly opposite to that of i. We

therefore write the law of reflection as

i'=—i (1.3)

1.1.4 Total Internal Reflection

Here we consider a ray that strikes an interface from the high-index side, say, from glass to air
(not air to glass). This is known as internal reflection. The law of refraction shows that the incident

ray is in this case bent away from the normal when it crosses the interface, as shown in Fig.1.3.
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Thus, there will be some angle of incidence for which the
refracted ray will travel just parallel to the interface. In this

case, i' =90°, so the law of refraction becomes =
n n
nsini, =n'sin90° (1.4) J\
i
|
|

where i, is known as the critical angle. Since sin90°=1,
sini, =n'/n (1.5)

.. . Fig.1.3 Refraction near the critical angle
If i exceeds 7., then nsin i > n', and the law of refraction & &

demands that sini’ exceed 1. Because this is impossible, we can conclude only that there can be no
refracted ray in such cases. The light cannot simply vanish, so we are not surprised that it must be
wholly reflected; this is indeed the case. The phenomenon is known as total internal reflection; it
occurs whenever
i > arcsin(n'/ n) (1.6)
The reflected light, of course, obeys the law of reflection.
For a typical glass-air interface, n=1.5, the critical angle is about 42° . Glass prisms that
exhibit total reflection are therefore commonly used as mirrors with angles of incidence of about 45° .

1.1.5 Reflecting Prisms

There are different types of reflecting prism. The most common are prisms whose cross
sections are right isosceles triangles. One advantage of a prism over a metal-coated mirror is that its
reflectance is nearly 100% if the surfaces normal to
the light are antireflection coated. Further, the

prism’s properties do not change as the prism ages,

whereas metallic mirrors are subject to oxidation and

are relatively easy to scratch. A glass prism is
sufficiently durable that it can withstand all but the

most intense laser beams. Fig.1.4 shows a prism

. . . Fig.1.4 Reflecting prisms

being used in place of a plane mirror.
In imaging-forming systems, these prisms must be used in collimated light beams to avoid

introducing defects into the optical image.

1.2 Imaging

1.2.1 Spherical Surfaces

Because a simple lens consists of a piece of glass with, in general, two spherical surfaces, we
will find it necessary to examine some of the properties of a single, spherical refracting surface. We
will for brevity call such a surface, as shown in Fig.1.5, a “len”. Two of these form a lens. To avoid
confusion, we will always place “len” in quotes.



Fig.1.5 Spherical refracting surface

We are interested in the imaging property of the ‘len”. We consider a bright point A and define
the axis along the line AC, where C is the center of the spherical surface. We examine a particular ray
AP that strikes the “len” at P. We shall be interested in the point A" where this ray intersects the axis.

Before proceeding any further, we must adopt a sign convention. The choice of convention is,
of course, arbitrary, but once we choose a convention, we shall have to stick with it. The convention
we adopt appears, at first, quite complicated. We choose it at least in part because it is universally
applicable; with it we will not need to derive a special convention for spherical mirrors.

To begin, imagine a set of Cartesian coordinate axes centered at O. Distances are measured
from O. Distances measured from O to the right are positive; those measured from O to the left are
negative. Thus, for example, OA" and OC are positive, whereas O4 is negative. Similarly, distances
measured above the axis are positive; those below are negative. This is our first sign convention.

We now adopt a convention for the signs of angles such as OAP or OA'P . We determine their
signs by trigonometry. For example, the tangent of angle OAP is approximately

tanOAP~y/OA (1.7
where y is the distance indicated between P and the axis. Our previous convention shows that y is
positive, and OA, negative. Thus, tan OAP is negative and so is OAP itself. Similarly, O4'P and
OCP are positive.

This is our second sign convention. An equivalent statement is that angle OA4'P (for example)
is positive if it opens clockwise from the axis, or negative otherwise. It is probably simplest,
however, merely to remember that angle OAP is negative as drawn in Fig.1.5.

Finally, we deal with angles of incidence and refraction, such as angle CPA'. It is most
convenient to define CPA’ to be positive as shown in Fig.1.5. The angle of incidence or refraction
is positive if it opens counterclockwise from the normal (which is, in this case, the radius of the
spherical surface) .

Unfortunately, when the last convention is expressed in this way, the statement differs from
that which refers to angles (such as O4P) formed by a ray crossing the axis. It is best to learn the
sign convention by remembering the signs of all of the important angles in Fig.1.5. Only angle OAP
is negative.

Let us now assign symbols to the more important quantities in Fig.1.5. The point 4" is located a
distance ' to the right of O, and the ray intersects the axis at 4" with angle u" . The radius R through the
point P makes angle « with the axis. The angles of incidence and refraction are i and i’ respectively.

We must be careful of the signs of OA4 and angle OAP, both of which are negative according to
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our sign convention. This is indicated in Fig.1.5 with parenthetical minus signs. We shall later find
it necessary, after a derivation based on geometry alone, to go through our formulas and change the
signs of all quantities that are algebraically negative. This is so because our sign convention is not
used in ordinary geometry. To make our formulas both algebraically and numerically correct, we
must introduce our sign convention, which we do as indicated, by changing signs appropriately.

1.2.2 Object-Image Relationship

We now attempt to find a relationship between the quantities / and /" for a given geometry.
First, we relate angle u and i to angle a. The three angles in triangle PAC are u, o and t—i. Because
the sum of these angles must be 1, we have

u+a+(n—-i)=mn (1.8)
or i=a+u (1.9)
Similarly i'=a—u' (1.10)

At this point, it is convenient to make the paraxial approximation, namely, the approximation
that the ray AP remains sufficiently close to the axis that angles u, u', i and i’ are so small that
their sines or tangents can be replaced by their arguments; that is

sinf=tanf =6 (1.11)
where 6is measured in radians.

It is difficult to draw rays that nearly coincide with the axis, so we redraw Fig.1.5 by
expanding the vertical axis a great amount, leaving the horizontal axis intact. The vertical axis has
been stretched so much that the surface looks like a plane. In addition, because only one axis has
been expanded, all angles are greatly distorted and can be discussed only in terms of their tangents.
Thus, for example,

u=y/l (1.12)
and u'=yl/l (1.13)
in paraxial approximation. Note also that large angles are distorted. Although the radius is normal to
the surface, it does not look normal in the paraxial approximation.

To return to the problem at hand, the law of refraction is

ni=n'l (1.14)
in paraxial approximation, from which we write
n(a+u)=n"(a—-u") (1.15)
Because OC=R, we write « as
a=y/R (1.16)
The last equation therefore becomes
D)

A factor of y is common to every term and therefore cancels. We rewrite this relation as
n n n-n

71 R

(1.18)



At this point, we have made no mention of the sign convention. We derived the proceeding
equation on the basis of geometry alone. According to our sign convention, all of the terms in the
equation are positive, except /, which is negative. To make the equation algebraically correct, we
must, therefore, change the sign of the term containing /. This change alters the equation to

n n n'-n
= 1.19
I R ( )

which we refer to as the “len” equation.

There is no dependence on y in the “len” equation. Thus, in paraxial approximation, every ray
leaving 4 (and striking the surface) crosses the axis at 4. We therefore refer to A" as the image of
A.Aand A are called conjugate points, and the object distance / and image distance [’ are called
conjugates.

Had we not made the paraxial approximation, the y dependence of the image point would not
have vanished. Rays that struck the lens at large values of y would not cross the axis precisely at
A'. The dependence on y is relatively small, so we would still refer to A" as the image point. We
say that the image suffers from aberrations if all of the geometrical rays do not cross the axis within
a specified distance of A4'.

1.2.3 Use of the Sign Conventions

A word of warning with regard to the signs in algebraic expression: Because of the sign
convention adopted here, derivations based solely on geometry will not necessarily result in the
correct sign for a given term. There are two ways to correct this defect. The first, to carry a minus
sign before the symbol of each negative quantity, is too cumbersome and confusing for general use.
Thus, we adopt the second, which is to go through the final formula and change the sign of each
negative quantity. This procedure has already been adopted in connection with the “len” equation
and is necessary, as noted, to make the formula algebraically correct. It is important, though, not to
change the signs until the final step, lest some signs be altered twice.

1.2.4 Lens Equation

A thin lens consists merely of two successive spherical refracting surfaces with a very small
separation between them. Fig.1.6 shows a thin lens in air. The index of the lens is n. The two
refracting surfaces have radii R, and R,, both of which are drawn positive.

We can derive an equation that relates the object distance / and the image distance I' by
considering the behavior of the two surfaces separately. The first surface alone would project an
image of point 4 to a point A4 . If A4 is located at a distance /; to the right of the first surface, the

“len” equation shows that, in paraxial approximation,
n 1 n-1

Il R

because 7 is the index of the glass (second medium) and 1, the index of the air.

(1.20)
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Fig.1.6 Thin lens

The ray does not ever reach A, because it is intercepted by the second surface. The second

surface, however, behaves as if an object were located at A . The object distance is /], if we

neglect the thickness of the lens. In applying the “len” equation to the second surface, we must
realize that the ray travels across the interface from glass to air. Thus 7 is the index of the first
medium and 1, that of the second. The final image point A’ is also the image projected by the lens

as a whole. If we call the corresponding image distance [, then the “len” equation yields
I n 1-n

———= 1.21
" Il R, (1.21)
for the second surface.
If we add the last two equations algebraically, we find that
1_1 1 _1
=== =—-—= 1.22
=g (1.22)

which is known as the lens-maker’s formula. The lens-maker's formula was derived from the “len”
equation by algebra alone. There are no signs to change because that step was included in the
derivation of the “len” equation.

We may define a quantity f’ whose reciprocal is equal to the right-hand side of the lens-

maker’s formula,

1 1_1
—,=(n—l)[———j (1.23)
f Rl RZ
The lens-maker’s formula may then be written as
111 (1.24)
rrof

where [’ is the focal length of the lens. We call this equation the lens equation.
We may see the significance of f” in the following way. If the object is infinitely distant from
the lens, then /=—o0. The lens equation then shows that the image distance is equal to f’. If the

object is located along the axis of the lens, the image also falls on the axis. We call the image point
in this case the secondary focal point F'. Note that any ray that travels parallel to the axis is
directed by the lens through F', an observation that we will later find particularly useful.

We define the primary focal point F in a similar way. The primary focal length f'is the object
distance for which /'=oo. Thus, the lens equation shows that

f'=—f (1.25)

the primary and secondary focal lengths have equal magnitudes. Any ray that passes through F will
be directed by the lens parallel to the axis.

Finally, we note that, in the general case, a lens may have different media on opposite sides. In

this case, the lens equation may be shown to be
. 7 .



r_r_n__1n (1.26)
rorf f
where n and »n' are the indices in the first and second media, respectively. The primary and

secondary focal lengths are not equal, but are related by

?:—’% (127)

1.2.5 Classification of Lenses and Images

A positive lens is a lens that will cause a bundle of parallel rays to converge to a point. Its secondary
focal point lies to the right of the lens and f” is therefore positive. It may be regarded as a lens that is
capable of projecting an image of a relatively distant object on a screen. An image that can be projected
on a screen is called a real image. In general, a positive lens projects a real, inverted image of any object
located to the left of its primary focal point /. When an object is located at F, the image is projected to oo.
The lens is not strong enough to project an image when the object is inside F. In that case, an erect image
appears to lie behind the lens and is known as a virtual image.

A positive lens need not have two convex surfaces. It may have the meniscus shape of Fig.1.6.
If the lens is thickest in the middle, the lens-maker’s formula will show it to be a positive lens.

A negative lens has its secondary focal point located to the left. Its secondary focal length f”

is negative, and it cannot project a real image of a real object. Rather, it displays an erect, virtual
image of such an object. In only one instance can a negative lens display a real image. This is the
case when a positive lens projects a real image that is intercepted by a negative lens located to the
left of the image plane. Because the rays are cut off by the negative lens, the real image never
appears, but behaves as a virtual object projected by the negative lens.

Like a positive lens, a negative lens need not be concave on both surfaces, but may be a meniscus.
If the lens is thinnest in the center, /" will prove to be negative and the lens, also negative.

1.2.6 Spherical Mirrors

Our formalism allows mirror optics to be developed as a special case of lens optics. We notice
first that the law of reflection i’ =—i can also be written

(=Dsini' =1sini (1.28)
which is precisely analogous to the law of refraction, with n'=-1. We may therefore regard a
mirror as a single refracting surface, across which the index changes from +1 to —1. It is left as a

problem to apply the “len” equation to this case. We find that the focal length of a mirror is
f'=R/2 (1.29)
where R is the radius of curvature. In addition, the focal points F and F' coincide. The formula that

relates the conjugates for a curved-mirror system is

11 2
1,12 1.30
I' 1 R (1.30)

Mirrors are usually classified as concave and convex. A concave mirror usually projects a real,
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inverted image, whereas a convex mirror forms an erect, virtual image.

1.2.7 Aberrations

The aberrations of simple, single-element lenses can be quite severe when the lens is
comparatively large (with respect to image or object distance) or when the object is located far from
the lens axis. When a simple lens is incapable of performing a certain task, it will be necessary to
employ a lens, such as a camera lens, whose aberrations have been largely corrected. For specially
demanding functions, special lenses may have to be designed and built.

All real lenses made from spherical surfaces may display spherical aberration. Additionally, if
the object point is distant from the axis of the lens, or off-axis, the image may display other
aberrations, such as astigmatism, coma, distortion, and field curvature. Furthermore, the index of
refraction of the lens is a function of wavelength, so its focal length varies slightly with wavelength;
the resulting aberration is called chromatic aberration.

Spherical aberration appears both on the axis and off the axis, and does not depend on the
distance off-axis. Astigmatism occurs because an off-axis bundle of rays strikes the lens
asymmetrically. This asymmetry causes a pair of line images to appear: one behind the plane of best
focus and the other in front of it. Coma gives rise to a cometlike image; the head of the comet is the
paraxial image point, and the aberration manifests itself as the tail. The tail points away from the
axis of the lens and is 3 times longer than its wide. The length of the comatic image, from the
paraxial image point to the end of the tail, increases in proportion to the square of the lens diameter
and to the distance of the image point from the axis of the lens. The image projected by a lens does
not truly lie on a plane but rather on a curved surface, even if other aberrations are zero. This
aberration is called field curvature. If the magnification is function of the distance of an image point
from the axis, then the image will not be rectilinear. The resulting aberration is called distortion.

Aberrations may be reduced by adjust the radii of the curvature of lens elements so that, for
example, angles of incidence are minimized; this process is sometimes called bending the lens.
Astigmatism, however, is only weakly influenced by bending the elements. Similarly, one
aberration can sometimes be balanced against another. For example, spherical aberration can be
partially compensated by moving the image plane from the paraxial image plane to the waist, that is,
by compensating spherical aberration by defocusing. Similarly, coma, distortion, and astigmatism
can be reduced by adjusting the axis position of the aperture stop.
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