
3.1 What Is a Process?
Background

Processes and Process Control Blocks

3.2 Process States
A Two-State Process Model

The Creation and Termination of Processes

A Five-State Model

Suspended Processes

3.3 Process Description
Operating System Control Structures

Process Control Structures

3.4 Process Control
Modes of Execution

Process Creation

Process Switching

3.5 Execution of the Operating System
Nonprocess Kernel

Execution within User Processes

Process-Based Operating System

3.6 UNIX SVR4 Process Management
Process States

Process Description

Process Control

3.7 Summary

3.8 Key Terms, Review Questions, and Problems

Process Description
and Control

CHAPTER

ProcessesPART 2

101电子工业出版社版权所有

 盗
版必究

102 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

All multiprogramming operating systems, from single-user systems such as Windows

for end users to mainframe systems such as IBM’s mainframe operating system

z/OS which can support thousands of users, are built around the concept of the pro-

cess. Most requirements that the OS must meet can be expressed with reference to

processes:

The OS must interleave the execution of multiple processes, to maximize pro-

cessor utilization while providing reasonable response time.

The OS must allocate resources to processes in conformance with a specific

policy (e.g., certain functions or applications are of higher priority) while at the

same time avoiding deadlock.1

The OS may be required to support interprocess communication and user cre-

ation of processes, both of which may aid in the structuring of applications.

We begin with an examination of the way in which the OS represents and

controls processes. Then, the chapter discusses process states, which characterize the

behavior of processes. We will then look at the data structures that the OS uses to

manage processes. These include data structures to represent the state of each process

and data structures that record other characteristics of processes that the OS needs

to achieve its objectives. Next, we will look at the ways in which the OS uses these

data structures to control process execution. Finally, we will discuss process man-

agement in UNIX SVR4. Chapter 4 will provide more modern examples of process

management.

This chapter occasionally refers to virtual memory. Much of the time, we can

ignore this concept in dealing with processes, but at certain points in the discus-

sion, virtual memory considerations are pertinent. Virtual memory was previewed

in Chapter 2 and will be discussed in detail in Chapter 8.

1Deadlock will be examined in Chapter 6. As a simple example, deadlock occurs if two processes need the
same two resources to continue and each has ownership of one. Unless some action is taken, each process
will wait indefinitely for the missing resource.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

Define the term process and explain the relationship between processes and

process control blocks.

Explain the concept of a process state and discuss the state transitions the

processes undergo.

List and describe the purpose of the data structures and data structure

elements used by an OS to manage processes.

Assess the requirements for process control by the OS.

Understand the issues involved in the execution of OS code.

Describe the process management scheme for UNIX SVR4.

电子工业出版社版权所有

 盗
版必究

3.1 / WHAT IS A PROCESS? 103

3.1 WHAT IS A PROCESS?

Background

Before defining the term process, it is useful to summarize some of the concepts

introduced in Chapters 1 and 2:

1. A computer platform consists of a collection of hardware resources, such as the

processor, main memory, I/O modules, timers, disk drives, and so on.

2. Computer applications are developed to perform some task. Typically, they

accept input from the outside world, perform some processing, and generate

output.

3. It is inefficient for applications to be written directly for a given hardware plat-

form. The principal reasons for this are as follows:

a. Numerous applications can be developed for the same platform. Thus, it

makes sense to develop common routines for accessing the computer’s

resources.

b. The processor itself provides only limited support for multiprogramming.

Software is needed to manage the sharing of the processor and other

resources by multiple applications at the same time.

c. When multiple applications are active at the same time, it is necessary to

protect the data, I/O use, and other resource use of each application from

the others.

4. The OS was developed to provide a convenient, feature-rich, secure, and consis-

tent interface for applications to use. The OS is a layer of software between the

applications and the computer hardware (see Figure 2.1) that supports applica-

tions and utilities.

5. We can think of the OS as providing a uniform, abstract representation of

resources that can be requested and accessed by applications. Resources include

main memory, network interfaces, file systems, and so on. Once the OS has cre-

ated these resource abstractions for applications to use, it must also manage their

use. For example, an OS may permit resource sharing and resource protection.

Now that we have the concepts of applications, system software, and resources,

we are in a position to discuss how the OS can, in an orderly fashion, manage the

execution of applications such that:

Resources are made available to multiple applications.

The physical processor is switched among multiple applications so all will

appear to be progressing.

The processor and I/O devices can be used efficiently.

The approach taken by all modern operating systems is to rely on a model in

which the execution of an application corresponds to the existence of one or more

processes.电子工业出版社版权所有

 盗
版必究

104 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Processes and Process Control Blocks

Recall from Chapter 2 that we suggested several definitions of the term process,

including:

A program in execution.

An instance of a program running on a computer.

The entity that can be assigned to and executed on a processor.

A unit of activity characterized by the execution of a sequence of instructions,

a current state, and an associated set of system resources.

We can also think of a process as an entity that consists of a number of elements.

Two essential elements of a process are program code (which may be shared with

other processes that are executing the same program) and a set of data associated

with that code. Let us suppose the processor begins to execute this program code,

and we refer to this executing entity as a process. At any given point in time, while
the program is executing, this process can be uniquely characterized by a number of

elements, including the following:

Identifier: A unique identifier associated with this process, to distinguish it from

all other processes.

State: If the process is currently executing, it is in the running state.

Priority: Priority level relative to other processes.

Program counter: The address of the next instruction in the program to be

executed.

Memory pointers: Include pointers to the program code and data associated

with this process, plus any memory blocks shared with other processes.

Context data: These are data that are present in registers in the processor while

the process is executing.

I/O status information: Includes outstanding I/O requests, I/O devices assigned

to this process, a list of files in use by the process, and so on.

Accounting information: May include the amount of processor time and clock

time used, time limits, account numbers, and so on.

The information in the preceding list is stored in a data structure, typically

called a process control block (see Figure 3.1), that is created and managed by the

OS. The significant point about the process control block is that it contains sufficient

information so it is possible to interrupt a running process and later resume execu-

tion as if the interruption had not occurred. The process control block is the key tool

that enables the OS to support multiple processes and to provide for multiprocess-

ing. When a process is interrupted, the current values of the program counter and

the processor registers (context data) are saved in the appropriate fields of the cor-

responding process control block, and the state of the process is changed to some

other value, such as blocked or ready (described subsequently). The OS is now free to

put some other process in the running state. The program counter and context data

for this process are loaded into the processor registers, and this process now begins

to execute.电子工业出版社版权所有

 盗
版必究

3.2 / PROCESS STATES 105

Thus, we can say that a process consists of program code and associated data

plus a process control block. For a single-processor computer, at any given time, at

most one process is executing and that process is in the running state.

3.2 PROCESS STATES

As just discussed, for a program to be executed, a process, or task, is created for

that program. From the processor’s point of view, it executes instructions from its

repertoire in some sequence dictated by the changing values in the program counter

register. Over time, the program counter may refer to code in different programs that

are part of different processes. From the point of view of an individual program, its

execution involves a sequence of instructions within that program.

We can characterize the behavior of an individual process by listing the

sequence of instructions that execute for that process. Such a listing is referred to as

a trace of the process. We can characterize behavior of the processor by showing how

the traces of the various processes are interleaved.

Let us consider a very simple example. Figure 3.2 shows a memory layout of three

processes. To simplify the discussion, we assume no use of virtual memory; thus all three

processes are represented by programs that are fully loaded in main memory. In addi-

tion, there is a small dispatcher program that switches the processor from one process

Figure 3.1 Simplified Process Control Block

Identifier

State

Priority

Program counter

Memory pointers

Context data

I/O status
information

Accounting
information

电子工业出版社版权所有

 盗
版必究

106 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Figure 3.2 Snapshot of Example Execution (Figure 3.4) at Instruction Cycle 13

Main memoryAddress

Dispatcher

Process A

Process B

Process C

Program counter
0

100

5000

8000

8000

12000

5000 8000 12000

5001 8001 12001

5002 8002 12002

5003 8003 12003

5004 12004

5005 12005

5006 12006

5007 12007

5008 12008

5009 12009

5010 12010

5011 12011

(a) Trace of process A (b) Trace of process B (c) Trace of process C

5000 = Starting address of program of process A

8000 = Starting address of program of process B

12000 = Starting address of program of process C

Figure 3.3 Traces of Processes of Figure 3.2

to another. Figure 3.3 shows the traces of each of the processes during the early part

of their execution. The first 12 instructions executed in processes A and C are shown.

Process B executes four instructions, and we assume the fourth instruction invokes an

I/O operation for which the process must wait.电子工业出版社版权所有

 盗
版必究

3.2 / PROCESS STATES 107

Now let us view these traces from the processor’s point of view. Figure 3.4 shows

the interleaved traces resulting from the first 52 instruction cycles (for convenience,

the instruction cycles are numbered). In this figure, the shaded areas represent code

executed by the dispatcher. The same sequence of instructions is executed by the

dispatcher in each instance because the same functionality of the dispatcher is being

executed. We assume the OS only allows a process to continue execution for a maxi-

mum of six instruction cycles, after which it is interrupted; this prevents any single

process from monopolizing processor time. As Figure 3.4 shows, the first six instruc-

tions of process A are executed, followed by a time-out and the execution of some

1 5000

2 5001

3 5002

4 5003

5 5004

6 5005

---------------------Time-out

7 100

8 101

9 102

10]103

11]104

12 105

13 8000

14 8001

15 8002

16 8003

---------------------I/O request

17 100

18 101

19 102

20 103

21 104

22 105

23 12000

24 12001

25 12002

26 12003

27 12004

28 12005

---------------------Time-out

29 100

30 101

31 102

32 103

33 104

34 105

35 5006

36 5007

37 5008

38 5009

39 5010

40 5011

---------------------Time-out

41 100

42 101

43 102

44 103

45 104

46 105

47 12006

48 12007

49 12008

50 12009

51 12010

52 12011

---------------------Time-out

100 = Starting address of dispatcher program

Shaded areas indicate execution of dispatcher process;

first and third columns count instruction cycles;

second and fourth columns show address of instruction being executed.

Figure 3.4 Combined Trace of Processes of Figure 3.2电子工业出版社版权所有

 盗
版必究

108 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

code in the dispatcher, which executes six instructions before turning control to pro-

cess B.2 After four instructions are executed, process B requests an I/O action for

which it must wait. Therefore, the processor stops executing process B and moves on,

via the dispatcher, to process C. After a time-out, the processor moves back to process

A. When this process times out, process B is still waiting for the I/O operation to

complete, so the dispatcher moves on to process C again.

A Two-State Process Model

The operating system’s principal responsibility is controlling the execution of pro-

cesses; this includes determining the interleaving pattern for execution and allocating

resources to processes. The first step in designing an OS to control processes is to

describe the behavior that we would like the processes to exhibit.

We can construct the simplest possible model by observing that, at any time,

a process is either being executed by a processor, or it isn’t. In this model, a process

may be in one of the two states: Running or Not Running, as shown in Figure 3.5a.

When the OS creates a new process, it creates a process control block for the process

and enters that process into the system in the Not Running state. The process exists,

is known to the OS, and is waiting for an opportunity to execute. From time to time,

the currently running process will be interrupted, and the dispatcher portion of the

OS will select some other process to run. The former process moves from the Run-

ning state to the Not Running state, and one of the other processes moves to the

Running state.

2The small number of instructions executed for the processes and the dispatcher are unrealistically low;
they are used in this simplified example to clarify the discussion.

Figure 3.5 Two-State Process Model

Not
running Running

Dispatch
Queue

Enter Exit

Enter Exit

Dispatch

Pause

Pause

(a) State transition diagram

(b) Queueing diagram

Processor

电子工业出版社版权所有

 盗
版必究

3.2 / PROCESS STATES 109

From this simple model, we can already begin to appreciate some of the design

elements of the OS. Each process must be represented in some way so the OS can

keep track of it. That is, there must be some information relating to each process,

including current state and location in memory; this is the process control block.

Processes that are not running must be kept in some sort of queue, waiting their turn

to execute. Figure 3.5b suggests a structure. There is a single queue in which each

entry is a pointer to the process control block of a particular process. Alternatively,

the queue may consist of a linked list of data blocks, in which each block represents

one process. We will explore this latter implementation subsequently.

We can describe the behavior of the dispatcher in terms of this queueing

diagram. A process that is interrupted is transferred to the queue of waiting pro-

cesses. Alternatively, if the process has completed or aborted, it is discarded (exits

the system). In either case, the dispatcher takes another process from the queue to

execute.

The Creation and Termination of Processes

Before refining our simple two-state model, it will be useful to discuss the creation

and termination of processes; ultimately, and regardless of the model of process

behavior that is used, the life of a process is bounded by its creation and termination.

PROCESS CREATION When a new process is to be added to those currently being

managed, the OS builds the data structures used to manage the process, and allocates

address space in main memory to the process. We will describe these data structures

in Section 3.3. These actions constitute the creation of a new process.

Four common events lead to the creation of a process, as indicated in Table 3.1.

In a batch environment, a process is created in response to the submission of a job.

In an interactive environment, a process is created when a new user attempts to log

on. In both cases, the OS is responsible for the creation of the new process. An OS

may also create a process on behalf of an application. For example, if a user requests

that a file be printed, the OS can create a process that will manage the printing. The

requesting process can thus proceed independently of the time required to complete

the printing task.

Traditionally, the OS created all processes in a way that was transparent to the

user or application program, and this is still commonly found with many contemporary

New batch job The OS is provided with a batch job control stream, usually on tape or

disk. When the OS is prepared to take on new work, it will read the next

sequence of job control commands.

Interactive log-on A user at a terminal logs on to the system.

Created by OS to provide a service The OS can create a process to perform a function on behalf of a user

program, without the user having to wait (e.g., a process to control

printing).

Spawned by existing process For purposes of modularity or to exploit parallelism, a user program can

dictate the creation of a number of processes.

Table 3.1 Reasons for Process Creation

电子工业出版社版权所有

 盗
版必究

110 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

operating systems. However, it can be useful to allow one process to cause the cre-

ation of another. For example, an application process may generate another process

to receive data that the application is generating, and to organize those data into a

form suitable for later analysis. The new process runs in parallel to the original pro-

cess and is activated from time to time when new data are available. This arrangement

can be very useful in structuring the application. As another example, a server pro-

cess (e.g., print server, file server) may generate a new process for each request that

it handles. When the OS creates a process at the explicit request of another process,

the action is referred to as process spawning.

When one process spawns another, the former is referred to as the parent
process, and the spawned process is referred to as the child process. Typically, the

“related” processes need to communicate and cooperate with each other. Achieving

this cooperation is a difficult task for the programmer; this topic will be discussed in

Chapter 5.

PROCESS TERMINATION Table 3.2 summarizes typical reasons for process termination.

Any computer system must provide a means for a process to indicate its completion.

A batch job should include a Halt instruction or an explicit OS service call for

termination. In the former case, the Halt instruction will generate an interrupt to

alert the OS that a process has completed. For an interactive application, the action

of the user will indicate when the process is completed. For example, in a time-sharing

system, the process for a particular user is to be terminated when the user logs off or

turns off his or her terminal. On a personal computer or workstation, a user may quit

an application (e.g., word processing or spreadsheet). All of these actions ultimately

result in a service request to the OS to terminate the requesting process.

Additionally, a number of error and fault conditions can lead to the termination

of a process. Table 3.2 lists some of the more commonly recognized conditions.3

Finally, in some operating systems, a process may be terminated by the process

that created it, or when the parent process is itself terminated.

A Five-State Model

If all processes were always ready to execute, then the queueing discipline suggested

by Figure 3.5b would be effective. The queue is a first-in-first-out list and the pro-

cessor operates in round-robin fashion on the available processes (each process in

the queue is given a certain amount of time, in turn, to execute and then returned

to the queue, unless blocked). However, even with the simple example that we have

described, this implementation is inadequate: Some processes in the Not Running

state are ready to execute, while others are blocked, waiting for an I/O operation

to complete. Thus, using a single queue, the dispatcher could not just select the

process at the oldest end of the queue. Rather, the dispatcher would have to scan

the list looking for the process that is not blocked and that has been in the queue

the longest.

3A forgiving operating system might, in some cases, allow the user to recover from a fault without termi-
nating the process. For example, if a user requests access to a file and that access is denied, the operating
system might simply inform the user that access is denied and allow the process to proceed.电子工业出版社版权所有

 盗
版必究

3.2 / PROCESS STATES 111

A more natural way to handle this situation is to split the Not Running state

into two states: Ready and Blocked. This is shown in Figure 3.6. For good measure,

we have added two additional states that will prove useful. The five states in this new

diagram are as follows:

1. Running: The process that is currently being executed. For this chapter, we will

assume a computer with a single processor, so at most, one process at a time

can be in this state.

2. Ready: A process that is prepared to execute when given the opportunity.

3. Blocked/Waiting:4 A process that cannot execute until some event occurs, such

as the completion of an I/O operation.

4Waiting is a frequently used alternative term for Blocked as a process state. Generally, we will use Blocked,
but the terms are interchangeable.

Normal completion The process executes an OS service call to indicate that it has completed

running.

Time limit exceeded The process has run longer than the specified total time limit. There are a

number of possibilities for the type of time that is measured. These include

total elapsed time (“wall clock time”), amount of time spent executing, and, in

the case of an interactive process, the amount of time since the user last pro-

vided any input.

Memory unavailable The process requires more memory than the system can provide.

Bounds violation The process tries to access a memory location that it is not allowed to access.

Protection error The process attempts to use a resource such as a file that it is not allowed to

use, or it tries to use it in an improper fashion, such as writing to a read-only

file.

Arithmetic error The process tries a prohibited computation (such as division by zero) or tries

to store numbers larger than the hardware can accommodate.

Time overrun The process has waited longer than a specified maximum for a certain event

to occur.

I/O failure An error occurs during input or output, such as inability to find a file, failure

to read or write after a specified maximum number of tries (when, for exam-

ple, a defective area is encountered on a tape), or invalid operation (such as

reading from the line printer).

Invalid instruction The process attempts to execute a nonexistent instruction (often a result of

branching into a data area and attempting to execute the data).

Privileged instruction The process attempts to use an instruction reserved for the operating system.

Data misuse A piece of data is of the wrong type or is not initialized.

Operator or OS intervention For some reason, the operator or the operating system has terminated the pro-

cess (e.g., if a deadlock exists).

Parent termination When a parent terminates, the operating system may automatically terminate

all of the offspring of that parent.

Parent request A parent process typically has the authority to terminate any of its offspring.

Table 3.2 Reasons for Process Termination

电子工业出版社版权所有

 盗
版必究

112 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

4. New: A process that has just been created but has not yet been admitted to the

pool of executable processes by the OS. Typically, a new process has not yet

been loaded into main memory, although its process control block has been

created.

5. Exit: A process that has been released from the pool of executable processes by

the OS, either because it halted or because it aborted for some reason.

The New and Exit states are useful constructs for process management. The

New state corresponds to a process that has just been defined. For example, if a new

user attempts to log on to a time-sharing system, or a new batch job is submitted for

execution, the OS can define a new process in two stages. First, the OS performs the

necessary housekeeping chores. An identifier is associated with the process. Any

tables that will be needed to manage the process are allocated and built. At this point,

the process is in the New state. This means that the OS has performed the necessary

actions to create the process, but has not committed itself to the execution of the

process. For example, the OS may limit the number of processes that may be in the

system for reasons of performance or main memory limitation. While a process is in

the new state, information concerning the process that is needed by the OS is main-

tained in control tables in main memory. However, the process itself is not in main

memory. That is, the code of the program to be executed is not in main memory, and

no space has been allocated for the data associated with that program. While the

process is in the New state, the program remains in secondary storage, typically disk

storage.5

Similarly, a process exits a system in two stages. First, a process is terminated

when it reaches a natural completion point, when it aborts due to an unrecoverable

error, or when another process with the appropriate authority causes the process to

abort. Termination moves the process to the Exit state. At this point, the process is

5In the discussion in this paragraph, we ignore the concept of virtual memory. In systems that support vir-
tual memory, when a process moves from New to Ready, its program code and data are loaded into virtual
memory. Virtual memory was briefly discussed in Chapter 2 and will be examined in detail in Chapter 8.

Figure 3.6 Five-State Process Model

Dispatch

Time-out

New Ready

Blocked

Running Exit
Admit Release

Event
wait

Event
occurs

电子工业出版社版权所有

 盗
版必究

3.2 / PROCESS STATES 113

no longer eligible for execution. The tables and other information associated with the

job are temporarily preserved by the OS, which provides time for auxiliary or support

programs to extract any needed information. For example, an accounting program

may need to record the processor time and other resources utilized by the process

for billing purposes. A utility program may need to extract information about the his-

tory of the process for purposes related to performance or utilization analysis. Once

these programs have extracted the needed information, the OS no longer needs to

maintain any data relating to the process, and the process is deleted from the system.

Figure 3.6 indicates the types of events that lead to each state transition for a

process; the possible transitions are as follows:

Null u New: A new process is created to execute a program. This event occurs

for any of the reasons listed in Table 3.1.

New u Ready: The OS will move a process from the New state to the Ready
state when it is prepared to take on an additional process. Most systems set

some limit based on the number of existing processes or the amount of virtual

memory committed to existing processes. This limit assures there are not so

many active processes as to degrade performance.

Ready u Running: When it is time to select a process to run, the OS chooses

one of the processes in the Ready state. This is the job of the scheduler or dis-

patcher. Scheduling is explored in Part Four.

Running u Exit: The currently running process is terminated by the OS if the

process indicates that it has completed or if it aborts. See Table 3.2.

Running u Ready: The most common reason for this transition is that the

running process has reached the maximum allowable time for uninterrupted

execution; virtually all multiprogramming operating systems impose this type

of time discipline. There are several other alternative causes for this transition,

which are not implemented in all operating systems. Of particular importance

is the case in which the OS assigns different levels of priority to different pro-

cesses. Suppose, for example, process A is running at a given priority level, and

process B, at a higher priority level, is blocked. If the OS learns that the event

upon which process B has been waiting has occurred, this moving B to a ready

state, then it can interrupt process A and dispatch process B. We say that the

OS has preempted process A.6 Finally, a process may voluntarily release control

of the processor. An example is a background process that periodically per-

forms some accounting or maintenance function.

Running u Blocked: A process is put in the Blocked state if it requests some-

thing for which it must wait. A request to the OS is usually in the form of a

system service call; that is, a call from the running program to a procedure that is

part of the operating system code. For example, a process may request a service

from the OS that the OS is not prepared to perform immediately. It can request

6 In general, the term preemption is defined to be the reclaiming of a resource from a process before the
process has finished using it. In this case, the resource is the processor itself. The process is executing and
could continue to execute, but is preempted so another process can be executed.电子工业出版社版权所有

 盗
版必究

114 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

a resource, such as a file or a shared section of virtual memory, that is not imme-

diately available. Or the process may initiate an action, such as an I/O opera-

tion, that must be completed before the process can continue. When processes

communicate with each other, a process may be blocked when it is waiting for

another process to provide data, or waiting for a message from another process.

Blocked u Ready: A process in the Blocked state is moved to the Ready state

when the event for which it has been waiting occurs.

Ready u Exit: For clarity, this transition is not shown on the state diagram.

In some systems, a parent may terminate a child process at any time. Also,

if a parent terminates, all child processes associated with that parent may be

terminated.

Blocked u Exit: The comments under the preceding item apply.

Returning to our simple example, Figure 3.7 shows the transition of each pro-

cess among the states. Figure 3.8a suggests the way in which a queueing discipline

might be implemented with two queues: a Ready queue and a Blocked queue. As

each process is admitted to the system, it is placed in the Ready queue. When it is time

for the OS to choose another process to run, it selects one from the Ready queue. In

the absence of any priority scheme, this can be a simple first-in-first-out queue. When

a running process is removed from execution, it is either terminated or placed in the

Ready or Blocked queue, depending on the circumstances. Finally, when an event

occurs, any process in the Blocked queue that has been waiting on that event only is

moved to the Ready queue.

This latter arrangement means that, when an event occurs, the OS must scan the

entire blocked queue, searching for those processes waiting on that event. In a large

OS, there could be hundreds or even thousands of processes in that queue. Therefore,

it would be more efficient to have a number of queues, one for each event. Then, when

the event occurs, the entire list of processes in the appropriate queue can be moved

to the Ready state (see Figure 3.8b).

Figure 3.7 Process States for the Trace of Figure 3.4

Dispatcher

5 Running 5 Ready 5 Blocked

0 5 10 15 20 25 30 35 40 45 50

Process C

Process B

Process A

电子工业出版社版权所有

 盗
版必究

3.2 / PROCESS STATES 115

One final refinement: If the dispatching of processes is dictated by a priority

scheme, then it would be convenient to have a number of Ready queues, one for each

priority level. The OS could then readily determine which is the highest-priority ready

process that has been waiting the longest.

Suspended Processes

THE NEED FOR SWAPPING The three principal states just described (Ready, Running,

and Blocked) provide a systematic way of modeling the behavior of processes and

guide the implementation of the OS. Some operating systems are constructed using

just these three states.

However, there is good justification for adding other states to the model. To

see the benefit of these new states, consider a system that does not employ virtual

memory. Each process to be executed must be loaded fully into main memory.

Thus, in Figure 3.8b, all of the processes in all of the queues must be resident in

main memory.

Figure 3.8 Queueing Model for Figure 3.6

Dispatch

Time-out

Event wait

Event 1 wait

Event 2 wait

Event n wait

Event
occurs

Ready queue

Blocked queue

Admit
Release

Processor

Dispatch
ReleaseReady queue

Admit
Processor

Time-out

Event 1 queue
Event 1
occurs

Event 2
occurs

Event n
occurs

Event 2 queue

Event n queue

(a) Single blocked queue

(b) Multiple blocked queues

电子工业出版社版权所有

 盗
版必究

116 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Recall that the reason for all of this elaborate machinery is that I/O activities

are much slower than computation, and therefore the processor in a uniprogramming

system is idle most of the time. But the arrangement of Figure 3.8b does not entirely

solve the problem. It is true that, in this case, memory holds multiple processes and

the processor can move to another process when one process is blocked. But the

processor is so much faster than I/O that it will be common for all of the processes in

memory to be waiting for I/O. Thus, even with multiprogramming, a processor could

be idle most of the time.

What to do? Main memory could be expanded to accommodate more pro-

cesses. But there are two flaws in this approach. First, there is a cost associated with

main memory, which, though small on a per-byte basis, begins to add up as we get into

the gigabytes of storage. Second, the appetite of programs for memory has grown as

fast as the cost of memory has dropped. So larger memory results in larger processes,

not more processes.

Another solution is swapping, which involves moving part or all of a process from

main memory to disk. When none of the processes in main memory is in the Ready state,

the OS swaps one of the blocked processes out on to disk into a suspend queue. This is a

queue of existing processes that have been temporarily kicked out of main memory, or

suspended. The OS then brings in another process from the suspend queue or it honors

a new-process request. Execution then continues with the newly arrived process.

Swapping, however, is an I/O operation, and therefore there is the potential for

making the problem worse, not better. But because disk I/O is generally the fastest

I/O on a system (e.g., compared to tape or printer I/O), swapping will usually enhance

performance.

With the use of swapping as just described, one other state must be added to

our process behavior model (see Figure 3.9a): the Suspend state. When all of the pro-

cesses in main memory are in the Blocked state, the OS can suspend one process by

putting it in the Suspend state and transferring it to disk. The space that is freed in

main memory can then be used to bring in another process.

When the OS has performed a swapping-out operation, it has two choices for

selecting a process to bring into main memory: It can admit a newly created process,

or it can bring in a previously suspended process. It would appear that the preference

should be to bring in a previously suspended process, to provide it with service rather

than increasing the total load on the system.

But this line of reasoning presents a difficulty. All of the processes that have

been suspended were in the Blocked state at the time of suspension. It clearly would

not do any good to bring a blocked process back into main memory, because it is still

not ready for execution. Recognize, however, that each process in the Suspend state

was originally blocked on a particular event. When that event occurs, the process is

not blocked and is potentially available for execution.

Therefore, we need to rethink this aspect of the design. There are two indepen-

dent concepts here: whether a process is waiting on an event (blocked or not), and

whether a process has been swapped out of main memory (suspended or not). To

accommodate this 2 * 2 combination, we need four states:

1. Ready: The process is in main memory and available for execution.

2. Blocked: The process is in main memory and awaiting an event.电子工业出版社版权所有

 盗
版必究

3.2 / PROCESS STATES 117

3. Blocked/Suspend: The process is in secondary memory and awaiting an event.

4. Ready/Suspend: The process is in secondary memory but is available for execu-

tion as soon as it is loaded into main memory.

Before looking at a state transition diagram that encompasses the two new sus-

pend states, one other point should be mentioned. The discussion so far has assumed

that virtual memory is not in use, and that a process is either all in main memory

or all out of main memory. With a virtual memory scheme, it is possible to execute

a process that is only partially in main memory. If reference is made to a process

address that is not in main memory, then the appropriate portion of the process can

be brought in. The use of virtual memory would appear to eliminate the need for

explicit swapping, because any desired address in any desired process can be moved

Figure 3.9 Process State Transition Diagram with Suspend States

E
v e

nt
oc

cu
rs

New

Suspend

Ready

Blocked

Running Exit
Admit

(a) With one Suspend state

Suspend

Eve
nt

wait

E
ve

nt
oc

cu
rs

Acti
va

te

Dispatch

Time-out

Release

Ready/
Suspend

New

Ready

Blocked

Running Exit
A

dm
itA

dm
it

(b) With two Suspend states

Eve
nt

wait

E
ve

nt
oc

cu
rs

Dispatch

Time-out

Activate

Suspend

Suspend

Activate

Suspend

Release

Blocked/
Suspend

电子工业出版社版权所有

 盗
版必究

118 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

in or out of main memory by the memory management hardware of the processor.

However, as we shall see in Chapter 8, the performance of a virtual memory system

can collapse if there is a sufficiently large number of active processes, all of which

are partially in main memory. Therefore, even in a virtual memory system, the OS

will need to swap out processes explicitly and completely from time to time in the

interests of performance.

Let us look now, in Figure 3.9b, at the state transition model that we have devel-

oped. (The dashed lines in the figure indicate possible but not necessary transitions.)

Important new transitions are the following:

Blocked u Blocked/Suspend: If there are no ready processes, then at least one

blocked process is swapped out to make room for another process that is not

blocked. This transition can be made even if there are ready processes available.

In particular, if the OS determines that the currently running process, or a ready

process that it would like to dispatch, requires more main memory to maintain

adequate performance, a blocked process will be suspended.

Blocked/Suspend u Ready/Suspend: A process in the Blocked/Suspend state

is moved to the Ready/Suspend state when the event for which it has been wait-

ing occurs. Note this requires that the state information concerning suspended

processes must be accessible to the OS.

Ready/Suspend u Ready: When there are no ready processes in main mem-

ory, the OS will need to bring one in to continue execution. In addition, it

might be the case that a process in the Ready/Suspend state has higher priority

than any of the processes in the Ready state. In that case, the OS designer may

dictate that it is more important to get at the higher-priority process than to

minimize swapping.

Ready u Ready/Suspend: Normally, the OS would prefer to suspend a

blocked process rather than a ready one, because the ready process can now

be executed, whereas the blocked process is taking up main memory space and

cannot be executed. However, it may be necessary to suspend a ready process if

that is the only way to free up a sufficiently large block of main memory. Also,

the OS may choose to suspend a lower–priority ready process rather than a

higher–priority blocked process if it believes that the blocked process will be

ready soon.

Several other transitions that are worth considering are the following:

New u Ready/Suspend and New u Ready: When a new process is created, it

can either be added to the Ready queue or the Ready/Suspend queue. In either

case, the OS must create a process control block and allocate an address space

to the process. It might be preferable for the OS to perform these housekeep-

ing duties at an early time, so it can maintain a large pool of processes that are

not blocked. With this strategy, there would often be insufficient room in main

memory for a new process; hence the use of the (New S Ready/Suspend)

transition. On the other hand, we could argue that a just-in-time philosophy

of creating processes as late as possible reduces OS overhead, and allows that

OS to perform the process creation duties at a time when the system is clogged

with blocked processes anyway.电子工业出版社版权所有

 盗
版必究

3.2 / PROCESS STATES 119

Blocked/Suspend u Blocked: Inclusion of this transition may seem to be poor

design. After all, if a process is not ready to execute and is not already in main

memory, what is the point of bringing it in? But consider the following scenario:

A process terminates, freeing up some main memory. There is a process in the

(Blocked/Suspend) queue with a higher priority than any of the processes in

the (Ready/Suspend) queue and the OS has reason to believe that the block-

ing event for that process will occur soon. Under these circumstances, it would

seem reasonable to bring a blocked process into main memory in preference

to a ready process.

Running u Ready/Suspend: Normally, a running process is moved to the

Ready state when its time allocation expires. If, however, the OS is preempting

the process because a higher-priority process on the Blocked/Suspend queue

has just become unblocked, the OS could move the running process directly to

the (Ready/Suspend) queue and free some main memory.

Any State u Exit: Typically, a process terminates while it is running, either

because it has completed or because of some fatal fault condition. However, in

some operating systems, a process may be terminated by the process that cre-

ated it or when the parent process is itself terminated. If this is allowed, then a

process in any state can be moved to the Exit state.

OTHER USES OF SUSPENSION So far, we have equated the concept of a suspended

process with that of a process that is not in main memory. A process that is not in

main memory is not immediately available for execution, whether or not it is awaiting

an event.

We can generalize the concept of a suspended process. Let us define a sus-

pended process as having the following characteristics:

1. The process is not immediately available for execution.

2. The process may or may not be waiting on an event. If it is, this blocked condi-

tion is independent of the suspend condition, and occurrence of the blocking

event does not enable the process to be executed immediately.

3. The process was placed in a suspended state by an agent: either itself, a parent

process, or the OS, for the purpose of preventing its execution.

4. The process may not be removed from this state until the agent explicitly orders

the removal.

Table 3.3 lists some reasons for the suspension of a process. One reason we

have discussed is to provide memory space either to bring in a Ready/Suspended

process or to increase the memory allocated to other Ready processes. The OS may

have other motivations for suspending a process. For example, an auditing or trac-

ing process may be employed to monitor activity on the system; the process may

be used to record the level of utilization of various resources (processor, memory,

channels) and the rate of progress of the user processes in the system. The OS,

under operator control, may turn this process on and off from time to time. If the

OS detects or suspects a problem, it may suspend a process. One example of this

is deadlock, which will be discussed in Chapter 6. As another example, a problem 电子工业出版社版权所有

 盗
版必究

120 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

is detected on a communications line, and the operator has the OS suspend the

process that is using the line while some tests are run.

Another set of reasons concerns the actions of an interactive user. For example,

if a user suspects a bug in the program, he or she may debug the program by sus-

pending its execution, examining and modifying the program or data, and resuming

execution. Or there may be a background process that is collecting trace or account-

ing statistics, which the user may wish to be able to turn on and off.

Timing considerations may also lead to a swapping decision. For example, if a

process is to be activated periodically but is idle most of the time, then it should be

swapped out between uses. A program that monitors utilization or user activity is an

example.

Finally, a parent process may wish to suspend a descendant process. For exam-

ple, process A may spawn process B to perform a file read. Subsequently, process B

encounters an error in the file read procedure and reports this to process A. Process

A suspends process B to investigate the cause.

In all of these cases, the activation of a suspended process is requested by the

agent that initially requested the suspension.

3.3 PROCESS DESCRIPTION

The OS controls events within the computer system. It schedules and dispatches pro-

cesses for execution by the processor, allocates resources to processes, and responds

to requests by user processes for basic services. Fundamentally, we can think of the

OS as that entity that manages the use of system resources by processes.

This concept is illustrated in Figure 3.10. In a multiprogramming environment,

there are a number of processes (P1, c , Pn) that have been created and exist in

virtual memory. Each process, during the course of its execution, needs access to

certain system resources, including the processor, I/O devices, and main memory. In

the figure, process P1 is running; at least part of the process is in main memory, and

it has control of two I/O devices. Process P2 is also in main memory, but is blocked

waiting for an I/O device allocated to P1. Process Pn has been swapped out and is

therefore suspended.

Swapping The OS needs to release sufficient main memory to bring in a process that is

ready to execute.

Other OS reason The OS may suspend a background or utility process or a process that is sus-

pected of causing a problem.

Interactive user request A user may wish to suspend execution of a program for purposes of debugging or

in connection with the use of a resource.

Timing A process may be executed periodically (e.g., an accounting or system monitoring

process) and may be suspended while waiting for the next time interval.

Parent process request A parent process may wish to suspend execution of a descendent to exam-

ine or modify the suspended process, or to coordinate the activity of various

descendants.

Table 3.3 Reasons for Process Suspension

电子工业出版社版权所有

 盗
版必究

3.3 / PROCESS DESCRIPTION 121

We will explore the details of the management of these resources by the OS

on behalf of the processes in later chapters. Here we are concerned with a more

fundamental question: What information does the OS need to control processes and

manage resources for them?

Operating System Control Structures

If the OS is to manage processes and resources, it must have information about the

current status of each process and resource. The universal approach to providing this

information is straightforward: The OS constructs and maintains tables of informa-

tion about each entity that it is managing. A general idea of the scope of this effort

is indicated in Figure 3.11, which shows four different types of tables maintained by

the OS: memory, I/O, file, and process. Although the details will differ from one OS

to another, fundamentally, all operating systems maintain information in these four

categories.

Memory tables are used to keep track of both main (real) and secondary (vir-

tual) memory. Some of main memory is reserved for use by the OS; the remainder is

available for use by processes. Processes are maintained on secondary memory using

some sort of virtual memory or simple swapping mechanism. The memory tables

must include the following information:

The allocation of main memory to processes

The allocation of secondary memory to processes

Any protection attributes of blocks of main or virtual memory, such as which

processes may access certain shared memory regions

Any information needed to manage virtual memory

We will examine the information structures for memory management in detail

in Part Three.

I/O tables are used by the OS to manage the I/O devices and channels of the

computer system. At any given time, an I/O device may be available or assigned to a

particular process. If an I/O operation is in progress, the OS needs to know the status

of the I/O operation and the location in main memory being used as the source or

destination of the I/O transfer. I/O management will be examined in Chapter 11.

The OS may also maintain file tables. These tables provide information about

the existence of files, their location on secondary memory, their current status, and

Figure 3.10 Processes and Resources (resource allocation at one snapshot in time)

Processor I/O I/O I/O Main
memory

Computer
resources

Virtual
memory

P2 PnP1

电子工业出版社版权所有

 盗
版必究

122 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

other attributes. Much, if not all, of this information may be maintained and used by

a file management system, in which case the OS has little or no knowledge of files.

In other operating systems, much of the detail of file management is managed by the

OS itself. This topic will be explored in Chapter 12.

Finally, the OS must maintain process tables to manage processes. The remain-

der of this section is devoted to an examination of the required process tables. Before

proceeding to this discussion, two additional points should be made. First, although

Figure 3.11 shows four distinct sets of tables, it should be clear that these tables must

be linked or cross-referenced in some fashion. Memory, I/O, and files are managed

on behalf of processes, so there must be some reference to these resources, directly

or indirectly, in the process tables. The files referred to in the file tables are acces-

sible via an I/O device and will, at some times, be in main or virtual memory. The

tables themselves must be accessible by the OS, and therefore are subject to memory

management.

Second, how does the OS know to create the tables in the first place? Clearly,

the OS must have some knowledge of the basic environment, such as how much main

memory exists, what are the I/O devices and what are their identifiers, and so on. This is

an issue of configuration. That is, when the OS is initialized, it must have access to some

configuration data that define the basic environment, and these data must be created

outside the OS, with human assistance or by some autoconfiguration software.

Figure 3.11 General Structure of Operating System Control Tables

Memory

Devices

Files

Processes

Process 1

Memory tables

Process
image

Process
1

Process
image

Process
n

I/O tables

File tables

Primary process table

Process 2

Process 3

Process n

电子工业出版社版权所有

 盗
版必究

3.3 / PROCESS DESCRIPTION 123

Process Control Structures

Consider what the OS must know if it is to manage and control a process. First, it

must know where the process is located; second, it must know the attributes of the

process that are necessary for its management (e.g., process ID and process state).

PROCESS LOCATION Before we can deal with the questions of where a process is

located or what its attributes are, we need to address an even more fundamental

question: What is the physical manifestation of a process? At a minimum, a process

must include a program or set of programs to be executed. Associated with these

programs is a set of data locations for local and global variables and any defined

constants. Thus, a process will consist of at least sufficient memory to hold the

programs and data of that process. In addition, the execution of a program typically

involves a stack (see Appendix P) that is used to keep track of procedure calls and

parameter passing between procedures. Finally, each process has associated with it a

number of attributes that are used by the OS for process control. Typically, the

collection of attributes is referred to as a process control block.7 We can refer to this

collection of program, data, stack, and attributes as the process image (see Table 3.4).

The location of a process image will depend on the memory management

scheme being used. In the simplest case, the process image is maintained as a contigu-

ous, or continuous, block of memory. This block is maintained in secondary memory,

usually disk. So that the OS can manage the process, at least a small portion of its

image must be maintained in main memory. To execute the process, the entire process

image must be loaded into main memory, or at least virtual memory. Thus, the OS

needs to know the location of each process on disk and, for each such process that is

in main memory, the location of that process in main memory. We saw a slightly more

complex variation on this scheme with the CTSS OS in Chapter 2. With CTSS, when

a process is swapped out, part of the process image may remain in main memory.

Thus, the OS must keep track of which portions of the image of each process are still

in main memory.

7Other commonly used names for this data structure are task control block, process descriptor, and task
descriptor.

User Data
The modifiable part of the user space. May include program data, a user stack area, and programs that may be

modified.

User Program
The program to be executed.

Stack
Each process has one or more last-in-first-out (LIFO) stacks associated with it. A stack is used to store param-

eters and calling addresses for procedure and system calls.

Process Control Block
Data needed by the OS to control the process (see Table 3.5).

Table 3.4 Typical Elements of a Process Image

电子工业出版社版权所有

 盗
版必究

124 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Modern operating systems presume paging hardware that allows noncontiguous

physical memory to support partially resident processes.8 At any given time, a portion

of a process image may be in main memory, with the remainder in secondary mem-

ory.9 Therefore, process tables maintained by the OS must show the location of each

page of each process image.

Figure 3.11 depicts the structure of the location information in the following

way. There is a primary process table with one entry for each process. Each entry

contains, at least, a pointer to a process image. If the process image contains mul-

tiple blocks, this information is contained directly in the primary process table or is

available by cross-reference to entries in memory tables. Of course, this depiction is

generic; a particular OS will have its own way of organizing the location information.

PROCESS ATTRIBUTES A sophisticated multiprogramming system requires a great

deal of information about each process. As was explained, this information can be

considered to reside in a process control block. Different systems will organize this

information in different ways, and several examples of this appear at the end of this

chapter and the next. For now, let us simply explore the type of information that

might be of use to an OS without considering in any detail how that information is

organized.

Table 3.5 lists the typical categories of information required by the OS for each

process. You may be somewhat surprised at the quantity of information required.

As you gain a greater appreciation of the responsibilities of the OS, this list should

appear more reasonable.

We can group the process control block information into three general

categories:

1. Process identification

2. Processor state information

3. Process control information

With respect to process identification, in virtually all operating systems, each

process is assigned a unique numeric identifier, which may simply be an index into

the primary process table (see Figure 3.11); otherwise there must be a mapping

that allows the OS to locate the appropriate tables based on the process identifier.

This identifier is useful in several ways. Many of the other tables controlled by the

OS may use process identifiers to cross-reference process tables. For example, the

memory tables may be organized so as to provide a map of main memory with

an indication of which process is assigned to each region. Similar references will

appear in I/O and file tables. When processes communicate with one another, the

8A brief overview of the concepts of pages, segments, and virtual memory is provided in the subsection
on memory management in Section 2.3.
9This brief discussion slides over some details. In particular, in a system that uses virtual memory, all of
the process image for an active process is always in secondary memory. When a portion of the image is
loaded into main memory, it is copied rather than moved. Thus, the secondary memory retains a copy of
all segments and/or pages. However, if the main memory portion of the image is modified, the secondary
copy will be out of date until the main memory portion is copied back onto disk.电子工业出版社版权所有

 盗
版必究

3.3 / PROCESS DESCRIPTION 125

Process Identification
Identifiers
Numeric identifiers that may be stored with the process control block include

Identifier of this process.

Identifier of the process that created this process (parent process).

User identifier.

Processor State Information
User-Visible Registers
A user-visible register is one that may be referenced by means of the machine language that the processor

executes while in user mode. Typically, there are from 8 to 32 of these registers, although some RISC imple-

mentations have over 100.

Control and Status Registers
These are a variety of processor registers that are employed to control the operation of the processor. These

include:

Program counter: Contains the address of the next instruction to be fetched.

Condition codes: Result of the most recent arithmetic or logical operation (e.g., sign, zero, carry, equal,

overflow).

Status information: Includes interrupt enabled/disabled flags, execution mode.

Stack Pointers
Each process has one or more last-in-first-out (LIFO) system stacks associated with it. A stack is used to store

parameters and calling addresses for procedure and system calls. The stack pointer points to the top of the

stack.

Process Control Information
Scheduling and State Information
This is information that is needed by the operating system to perform its scheduling function. Typical items of

information include:

Process state: Defines the readiness of the process to be scheduled for execution (e.g., running, ready, wait-

ing, halted).

Priority: One or more fields may be used to describe the scheduling priority of the process. In some systems,

several values are required (e.g., default, current, highest allowable).

Scheduling-related information: This will depend on the scheduling algorithm used. Examples are the

amount of time that the process has been waiting and the amount of time that the process executed the last

time it was running.

Event: Identity of event the process is awaiting before it can be resumed.

Data Structuring
A process may be linked to other process in a queue, ring, or some other structure. For example, all processes

in a waiting state for a particular priority level may be linked in a queue. A process may exhibit a parent–child

(creator–created) relationship with another process. The process control block may contain pointers to other

processes to support these structures.

Interprocess Communication
Various flags, signals, and messages may be associated with communication between two independent pro-

cesses. Some or all of this information may be maintained in the process control block.

Process Privileges
Processes are granted privileges in terms of the memory that may be accessed and the types of instructions

that may be executed. In addition, privileges may apply to the use of system utilities and services.

Memory Management
This section may include pointers to segment and/or page tables that describe the virtual memory assigned to

this process.

Resource Ownership and Utilization
Resources controlled by the process may be indicated, such as opened files. A history of utilization of the pro-

cessor or other resources may also be included; this information may be needed by the scheduler.

Table 3.5 Typical Elements of a Process Control Block

电子工业出版社版权所有

 盗
版必究

126 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

process identifier informs the OS of the destination of a particular communication.

When processes are allowed to create other processes, identifiers indicate the par-

ent and descendants of each process.

In addition to these process identifiers, a process may be assigned a user identi-

fier that indicates the user responsible for the job.

Processor state information consists of the contents of processor registers.

While a process is running, of course, the information is in the registers. When a pro-

cess is interrupted, all of this register information must be saved so it can be restored

when the process resumes execution. The nature and number of registers involved

depend on the design of the processor. Typically, the register set will include user-

visible registers, control and status registers, and stack pointers. These are described

in Chapter 1.

Of particular note, all processor designs include a register or set of registers,

often known as the program status word (PSW), that contains status information.

The PSW typically contains condition codes plus other status information. A good

example of a processor status word is that on Intel x86 processors, referred to as the

EFLAGS register (shown in Figure 3.12 and Table 3.6). This structure is used by any

OS (including UNIX and Windows) running on an x86 processor.

The third major category of information in the process control block can be

called, for want of a better name, process control information. This is the additional

information needed by the OS to control and coordinate the various active processes.

The last part of Table 3.5 indicates the scope of this information. As we examine the

details of operating system functionality in succeeding chapters, the need for the

various items on this list should become clear.

Figure 3.13 suggests the structure of process images in virtual memory. Each pro-

cess image consists of a process control block, a user stack, the private address space of

the process, and any other address space that the process shares with other processes. In

Figure 3.12 x86 EFLAGS Register

X ID = Identification flag
X VIP = Virtual interrupt pending
X VIF = Virtual interrupt flag
X AC = Alignment check
X VM = Virtual 8086 mode
X RF = Resume flag
X NT = Nested task flag
X IOPL = I/O privilege level
S OF = Overflow flag

C DF = Direction flag
X IF = Interrupt enable flag
X TF = Trap flag
S SF = Sign flag
S ZF = Zero flag
S AF = Auxiliary carry flag
S PF = Parity flag
S CF = Carry flag

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0 0 0 0 0 0 0 0 0 0
I
D

V
I
P

V
I
F

A
C

V
M

R
F

0
N
T

I
O
P
L

O
F

D
F

I
F

T
F

S
F

Z
F

0
A
F

0
P
F

1
C
F

0

S Indicates a Status Flag
C Indicates a Control Flag
X Indicates a System Flag
Shaded bits are reserved

电子工业出版社版权所有

 盗
版必究

3.3 / PROCESS DESCRIPTION 127

Status Flags (condition codes)

AF (Auxiliary carry flag)
Represents carrying or borrowing between half-bytes of an 8-bit arithmetic or logic operation using the AL

register.

CF (Carry flag)
Indicates carrying out or borrowing into the leftmost bit position following an arithmetic operation; also modi-

fied by some of the shift and rotate operations.

OF (Overflow flag)
Indicates an arithmetic overflow after an addition or subtraction.

PF (Parity flag)
Parity of the result of an arithmetic or logic operation. 1 indicates even parity; 0 indicates odd parity.

SF (Sign flag)
Indicates the sign of the result of an arithmetic or logic operation.

ZF (Zero flag)
Indicates that the result of an arithmetic or logic operation is 0.

Control Flag

DF (Direction flag)
Determines whether string processing instructions increment or decrement the 16-bit half-registers SI and DI

(for 16-bit operations) or the 32-bit registers ESI and EDI (for 32-bit operations).

System Flags (should not be modified by application programs)

AC (Alignment check)
Set if a word or doubleword is addressed on a nonword or nondoubleword boundary.

ID (Identification flag)
If this bit can be set and cleared, this processor supports the CPUID instruction. This instruction provides

information about the vendor, family, and model.

RF (Resume flag)
Allows the programmer to disable debug exceptions so the instruction can be restarted after a debug

exception without immediately causing another debug exception.

IOPL (I/O privilege level)
When set, it causes the processor to generate an exception on all accesses to I/O devices during protected

mode operation.

IF (Interrupt enable flag)
When set, the processor will recognize external interrupts.

TF (Trap flag)
When set, it causes an interrupt after the execution of each instruction. This is used for debugging.

NT (Nested task flag)
Indicates that the current task is nested within another task in protected mode operation.

VM (Virtual 8086 mode)
Allows the programmer to enable or disable virtual 8086 mode, which determines whether the processor runs

as an 8086 machine.

VIP (Virtual interrupt pending)
Used in virtual 8086 mode to indicate that one or more interrupts are awaiting service.

VIF (Virtual interrupt flag)
Used in virtual 8086 mode instead of IF.

Table 3.6 x86 EFLAGS Register Bits

电子工业出版社版权所有

 盗
版必究

128 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

the figure, each process image appears as a contiguous range of addresses. In an actual

implementation, this may not be the case; it will depend on the memory management

scheme and the way in which control structures are organized by the OS.

As indicated in Table 3.5, the process control block may contain structuring

information, including pointers that allow the linking of process control blocks.

Thus, the queues that were described in the preceding section could be implemented

as linked lists of process control blocks. For example, the queueing structure of

Figure 3.8a could be implemented as suggested in Figure 3.14.

THE ROLE OF THE PROCESS CONTROL BLOCK The process control block is the

most important data structure in an OS. Each process control block contains all of

the information about a process that is needed by the OS. The blocks are read and/or

modified by virtually every module in the OS, including those involved with scheduling,

resource allocation, interrupt processing, and performance monitoring and analysis. One

can say that the set of process control blocks defines the state of the OS.

This brings up an important design issue. A number of routines within the OS

will need access to information in process control blocks. The provision of direct

access to these tables is not difficult. Each process is equipped with a unique ID, and

this can be used as an index into a table of pointers to the process control blocks.

The difficulty is not access but rather protection. Two problems present themselves:

A bug in a single routine, such as an interrupt handler, could damage process

control blocks, which could destroy the system’s ability to manage the affected

processes.

Figure 3.13 User Processes in Virtual Memory

Process
identification

Process
control
block

Processor state
information

Process control
information

User stack

Private user
address space

(programs, data)

Shared address
space

Process
identification

Process 1 Process 2 Process n

Processor state
information

Process control
information

User stack

Private user
address space

(programs, data)

Shared address
space

Process
identification

Processor state
information

Process control
information

User stack

Private user
address space

(programs, data)

Shared address
space

电子工业出版社版权所有

 盗
版必究

3.4 / PROCESS CONTROL 129

A design change in the structure or semantics of the process control block could

affect a number of modules in the OS.

These problems can be addressed by requiring all routines in the OS to go

through a handler routine, the only job of which is to protect process control blocks,

and which is the sole arbiter for reading and writing these blocks. The trade-off in

the use of such a routine involves performance issues and the degree to which the

remainder of the system software can be trusted to be correct.

3.4 PROCESS CONTROL

Modes of Execution

Before continuing with our discussion of the way in which the OS manages processes,

we need to distinguish between the mode of processor execution normally associated

with the OS and that normally associated with user programs. Most processors sup-

port at least two modes of execution. Certain instructions can only be executed in

the more-privileged mode. These would include reading or altering a control register,

such as the PSW, primitive I/O instructions, and instructions that relate to memory

management. In addition, certain regions of memory can only be accessed in the

more-privileged mode.

Figure 3.14 Process List Structures

Running

Ready

Blocked

Process
control block

电子工业出版社版权所有

 盗
版必究

130 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

The less-privileged mode is often referred to as the user mode, because

user programs typically would execute in this mode. The more-privileged mode

is referred to as the system mode, control mode, or kernel mode. This last term

refers to the kernel of the OS, which is that portion of the OS that encompasses

the important system functions. Table 3.7 lists the functions typically found in the

kernel of an OS.

The reason for using two modes should be clear. It is necessary to protect the

OS and key operating system tables, such as process control blocks, from interfer-

ence by user programs. In the kernel mode, the software has complete control of the

processor and all its instructions, registers, and memory. This level of control is not

necessary, and for safety is not desirable for user programs.

Two questions arise: How does the processor know in which mode it is to be

executing, and how is the mode changed? Regarding the first question, typically

there is a bit in the PSW that indicates the mode of execution. This bit is changed

in response to certain events. Typically, when a user makes a call to an operating

system service or when an interrupt triggers execution of an operating system

routine, the mode is set to the kernel mode and, upon return from the service to

the user process, the mode is set to user mode. As an example, consider the Intel

Itanium processor, which implements the 64-bit IA-64 architecture. The processor

has a processor status register (PSR) that includes a 2-bit CPL (current privilege

level) field. Level 0 is the most privileged level, while level 3 is the least privileged

level. Most operating systems, such as Linux, use level 0 for the kernel and one

other level for user mode. When an interrupt occurs, the processor clears most

of the bits in the psr, including the CPL field. This automatically sets the CPL to

Process Management

Process creation and termination

Process scheduling and dispatching

Process switching

Process synchronization and support for interprocess communication

Management of process control blocks

Memory Management

Allocation of address space to processes

Swapping

Page and segment management

I/O Management

Buffer management

Allocation of I/O channels and devices to processes

Support Functions

Interrupt handling

Accounting

Monitoring

Table 3.7 Typical Functions of an Operating System Kernel

电子工业出版社版权所有

 盗
版必究

3.4 / PROCESS CONTROL 131

level 0. At the end of the interrupt-handling routine, the final instruction that is

executed is IRT (interrupt return). This instruction causes the processor to restore

the PSR of the interrupted program, which restores the privilege level of that pro-

gram. A similar sequence occurs when an application places a system call. For the

Itanium, an application places a system call by placing the system call identifier and

the system call arguments in a predefined area, then executing a special instruc-

tion that has the effect of interrupting execution at the user level and transferring

control to the kernel.

Process Creation

In Section 3.2, we discussed the events that lead to the creation of a new process. Hav-

ing discussed the data structures associated with a process, we are now in a position

to describe briefly the steps involved in actually creating the process.

Once the OS decides, for whatever reason (see Table 3.1), to create a new pro-

cess, it can proceed as follows:

1. Assign a unique process identifier to the new process. At this time, a new entry

is added to the primary process table, which contains one entry per process.

2. Allocate space for the process. This includes all elements of the process image.

Thus, the OS must know how much space is needed for the private user address

space (programs and data) and the user stack. These values can be assigned by

default based on the type of process, or they can be set based on user request

at job creation time. If a process is spawned by another process, the parent

process can pass the needed values to the OS as part of the process creation

request. If any existing address space is to be shared by this new process, the

appropriate linkages must be set up. Finally, space for a process control block

must be allocated.

3. Initialize the process control block. The process identification portion contains

the ID of this process plus other appropriate IDs, such as that of the parent

process. The processor state information portion will typically be initialized

with most entries zero, except for the program counter (set to the program entry

point) and system stack pointers (set to define the process stack boundaries).

The process control information portion is initialized based on standard default

values plus attributes that have been requested for this process. For example,

the process state would typically be initialized to Ready or Ready/Suspend. The

priority may be set by default to the lowest priority unless an explicit request

is made for a higher priority. Initially, the process may own no resources (I/O

devices, files) unless there is an explicit request for these, or unless they are

inherited from the parent.

4. Set the appropriate linkages. For example, if the OS maintains each scheduling

queue as a linked list, then the new process must be put in the Ready or Ready/

Suspend list.

5. Create or expand other data structures. For example, the OS may maintain

an accounting file on each process to be used subsequently for billing and/or

performance assessment purposes.电子工业出版社版权所有

 盗
版必究

132 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Process Switching

On the face of it, the function of process switching would seem to be straightforward.

At some time, a running process is interrupted, and the OS assigns another process

to the Running state and turns control over to that process. However, several design

issues are raised. First, what events trigger a process switch? Another issue is that we

must recognize the distinction between mode switching and process switching. Finally,

what must the OS do to the various data structures under its control to achieve a

process switch?

WHEN TO SWITCH PROCESSES A process switch may occur any time that the OS has

gained control from the currently running process. Table 3.8 suggests the possible

events that may give control to the OS.

First, let us consider system interrupts. Actually, we can distinguish, as many

systems do, two kinds of system interrupts, one of which is simply referred to as an

interrupt, and the other as a trap. The former is due to some sort of event that is

external to and independent of the currently running process, such as the completion

of an I/O operation. The latter relates to an error or exception condition generated

within the currently running process, such as an illegal file access attempt. With an

ordinary interrupt, control is first transferred to an interrupt handler, which does

some basic housekeeping and then branches to an OS routine that is concerned with

the particular type of interrupt that has occurred. Examples include the following:

Clock interrupt: The OS determines whether the currently running process has

been executing for the maximum allowable unit of time, referred to as a time
slice. That is, a time slice is the maximum amount of time that a process can

execute before being interrupted. If so, this process must be switched to a Ready

state and another process dispatched.

I/O interrupt: The OS determines what I/O action has occurred. If the I/O

action constitutes an event for which one or more processes are waiting, then

the OS moves all of the corresponding blocked processes to the Ready state

(and Blocked/Suspend processes to the Ready/Suspend state). The OS must

then decide whether to resume execution of the process currently in the Run-

ning state, or to preempt that process for a higher-priority Ready process.

Memory fault: The processor encounters a virtual memory address reference

for a word that is not in main memory. The OS must bring in the block (page

or segment) of memory containing the reference from secondary memory

Mechanism Cause Use

Interrupt External to the execution of the cur-

rent instruction

Reaction to an asynchronous external

event

Trap Associated with the execution of the

current instruction

Handling of an error or an exception

condition

Supervisor call Explicit request Call to an operating system function

Table 3.8 Mechanisms for Interrupting the Execution of a Process

电子工业出版社版权所有

 盗
版必究

3.4 / PROCESS CONTROL 133

to main memory. After the I/O request is issued to bring in the block of

memory, the process with the memory fault is placed in a blocked state; the

OS then performs a process switch to resume execution of another process.

After the desired block is brought into memory, that process is placed in

the Ready state.

With a trap, the OS determines if the error or exception condition is fatal. If so,

then the currently running process is moved to the Exit state and a process switch

occurs. If not, then the action of the OS will depend on the nature of the error and the

design of the OS. It may attempt some recovery procedure or simply notify the user.

It may perform a process switch or resume the currently running process.

Finally, the OS may be activated by a supervisor call from the program being

executed. For example, a user process is running and an instruction is executed that

requests an I/O operation, such as a file open. This call results in a transfer to a routine

that is part of the operating system code. The use of a system call may place the user

process in the Blocked state.

MODE SWITCHING In Chapter 1, we discussed the inclusion of an interrupt stage as

part of the instruction cycle. Recall that, in the interrupt stage, the processor checks

to see if any interrupts are pending, indicated by the presence of an interrupt signal.

If no interrupts are pending, the processor proceeds to the fetch stage and fetches

the next instruction of the current program in the current process. If an interrupt is

pending, the processor does the following:

1. It sets the program counter to the starting address of an interrupt-handler

program.

2. It switches from user mode to kernel mode so the interrupt processing code

may include privileged instructions.

The processor now proceeds to the fetch stage and fetches the first instruction of the

interrupt-handler program, which will service the interrupt. At this point, typically,

the context of the process that has been interrupted is saved into that process control

block of the interrupted program.

One question that may now occur to you is, What constitutes the context that is

saved? The answer is that it must include any information that may be altered by the

execution of the interrupt handler, and that will be needed to resume the program

that was interrupted. Thus, the portion of the process control block that was referred

to as processor state information must be saved. This includes the program counter,

other processor registers, and stack information.

Does anything else need to be done? That depends on what happens next. The

interrupt handler is typically a short program that performs a few basic tasks related

to an interrupt. For example, it resets the flag or indicator that signals the presence of

an interrupt. It may send an acknowledgment to the entity that issued the interrupt,

such as an I/O module. And it may do some basic housekeeping relating to the effects

of the event that caused the interrupt. For example, if the interrupt relates to an I/O

event, the interrupt handler will check for an error condition. If an error has occurred,

the interrupt handler may send a signal to the process that originally requested the

I/O operation. If the interrupt is by the clock, then the handler will hand control over 电子工业出版社版权所有

 盗
版必究

134 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

to the dispatcher, which will want to pass control to another process because the time

slice allotted to the currently running process has expired.

What about the other information in the process control block? If this inter-

rupt is to be followed by a switch to another process, then some work will need

to be done. However, in most operating systems, the occurrence of an interrupt

does not necessarily mean a process switch. It is possible that, after the interrupt

handler has executed, the currently running process will resume execution. In that

case, all that is necessary is to save the processor state information when the inter-

rupt occurs and restore that information when control is returned to the program

that was running. Typically, the saving and restoring functions are performed in

hardware.

CHANGE OF PROCESS STATE It is clear, then, that the mode switch is a concept

distinct from that of the process switch.10 A mode switch may occur without changing

the state of the process that is currently in the Running state. In that case, the context

saving and subsequent restoral involve little overhead. However, if the currently

running process is to be moved to another state (Ready, Blocked, etc.), then the OS

must make substantial changes in its environment. The steps involved in a full process

switch are as follows:

1. Save the context of the processor, including program counter and other

registers.

2. Update the process control block of the process that is currently in the Running

state. This includes changing the state of the process to one of the other states

(Ready; Blocked; Ready/Suspend; or Exit). Other relevant fields must also be

updated, including the reason for leaving the Running state and accounting

information.

3. Move the process control block of this process to the appropriate queue (Ready;

Blocked on Event i; Ready/Suspend).

4. Select another process for execution; this topic will be explored in Part Four.

5. Update the process control block of the process selected. This includes changing

the state of this process to Running.

6. Update memory management data structures. This may be required, depending

on how address translation is managed; this topic will be explored in Part Three.

7. Restore the context of the processor to that which existed at the time the

selected process was last switched out of the Running state, by loading in the

previous values of the program counter and other registers.

Thus, the process switch, which involves a state change, requires more effort than a

mode switch.

10The term context switch is often found in OS literature and textbooks. Unfortunately, although most of
the literature uses this term to mean what is here called a process switch, other sources use it to mean a
mode switch or even a thread switch (defined in the next chapter). To avoid ambiguity, the term is not
used in this book.电子工业出版社版权所有

 盗
版必究

3.5 / EXECUTION OF THE OPERATING SYSTEM 135

3.5 EXECUTION OF THE OPERATING SYSTEM

In Chapter 2, we pointed out two intriguing facts about operating systems:

The OS functions in the same way as ordinary computer software, in the sense

that the OS is a set of programs executed by the processor.

The OS frequently relinquishes control and depends on the processor to restore

control to the OS.

If the OS is just a collection of programs, and if it is executed by the proces-

sor just like any other program, is the OS a process? If so, how is it controlled?

These interesting questions have inspired a number of design approaches. Figure 3.15

illustrates a range of approaches that are found in various contemporary operating

systems.

Nonprocess Kernel

One traditional approach, common on many older operating systems, is to execute

the kernel of the OS outside of any process (see Figure 3.15a). With this approach,

when the currently running process is interrupted or issues a supervisor call, the

mode context of this process is saved and control is passed to the kernel. The OS has

its own region of memory to use and its own system stack for controlling procedure

calls and returns. The OS can perform any desired functions and restore the context

Figure 3.15 Relationship between Operating System
and User Processes

P1 P2 Pn

Kernel

(a) Separate kernel

(c) OS functions execute as separate processes

OS
func-
tions

OS
func-
tions

OS
func-
tions

Process-switching functions

Process-switching functions

(b) OS functions execute within user processes

P1

P1 P2 OS1

P2 Pn

Pn OSk

电子工业出版社版权所有

 盗
版必究

136 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

of the interrupted process, which causes execution to resume in the interrupted user

process. Alternatively, the OS can complete the function of saving the environment of

the process and proceed to schedule and dispatch another process. Whether this hap-

pens depends on the reason for the interruption and the circumstances at the time.

In any case, the key point here is that the concept of process is considered to

apply only to user programs. The operating system code is executed as a separate

entity that operates in privileged mode.

Execution within User Processes

An alternative that is common with operating systems on smaller computers (PCs,

workstations) is to execute virtually all OS software in the context of a user process.

The view is that the OS is primarily a collection of routines the user calls to perform

various functions, executed within the environment of the user’s process. This is illus-

trated in Figure 3.15b. At any given point, the OS is managing n process images. Each

image includes not only the regions illustrated in Figure 3.13 but also program, data,

and stack areas for kernel programs.

Figure 3.16 suggests a typical process image structure for this strategy. A sepa-

rate kernel stack is used to manage calls/returns while the process is in kernel mode.

Figure 3.16 Process Image: Operating
System Executes within
User Space

Process
identification

Processor state
information

Process control
information

User stack

Private user
address space

(programs, data)

Kernel stack

Shared address
space

Process control
block

电子工业出版社版权所有

 盗
版必究

3.5 / EXECUTION OF THE OPERATING SYSTEM 137

Operating system code and data are in the shared address space and are shared by

all user processes.

When an interrupt, trap, or supervisor call occurs, the processor is placed in

kernel mode and control is passed to the OS. To pass control from a user program

to the OS, the mode context is saved and a mode switch takes place to an operating

system routine. However, execution continues within the current user process. Thus,

a process switch is not performed, just a mode switch within the same process.

If the OS, upon completion of its work, determines that the current process

should continue to run, then a mode switch resumes the interrupted program within

the current process. This is one of the key advantages of this approach: A user

program has been interrupted to employ some operating system routine, and then

resumed, and all of this has occurred without incurring the penalty of two process

switches. If, however, it is determined that a process switch is to occur rather than

returning to the previously executing program, then control is passed to a process-

switching routine. This routine may or may not execute in the current process,

depending on system design. At some point, however, the current process has to be

placed in a nonrunning state, and another process designated as the running pro-

cess. During this phase, it is logically most convenient to view execution as taking

place outside of all processes.

In a way, this view of the OS is remarkable. Simply put, at certain points in time,

a process will save its state information, choose another process to run from among

those that are ready, and relinquish control to that process. The reason this is not an

arbitrary and indeed chaotic situation is that during the critical time, the code that

is executed in the user process is shared operating system code and not user code.

Because of the concept of user mode and kernel mode, the user cannot tamper with

or interfere with the operating system routines, even though they are executing in

the user’s process environment. This further reminds us that there is a distinction

between the concepts of process and program, and that the relationship between the

two is not one-to-one. Within a process, both a user program and operating system

programs may execute, and the operating system programs that execute in the various

user processes are identical.

Process-Based Operating System

Another alternative, illustrated in Figure 3.15c, is to implement the OS as a collection

of system processes. As in the other options, the software that is part of the kernel

executes in a kernel mode. In this case, however, major kernel functions are organized

as separate processes. Again, there may be a small amount of process-switching code

that is executed outside of any process.

This approach has several advantages. It imposes a program design discipline

that encourages the use of a modular OS with minimal, clean interfaces between the

modules. In addition, some noncritical operating system functions are conveniently

implemented as separate processes. For example, we mentioned earlier a monitor

program that records the level of utilization of various resources (processor, memory,

channels) and the rate of progress of the user processes in the system. Because this

program does not provide a particular service to any active process, it can only be

invoked by the OS. As a process, the function can run at an assigned priority level and 电子工业出版社版权所有

 盗
版必究

138 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

be interleaved with other processes under dispatcher control. Finally, implementing

the OS as a set of processes is useful in a multiprocessor or multicomputer environ-

ment, in which some of the operating system services can be shipped out to dedicated

processors, improving performance.

3.6 UNIX SVR4 PROCESS MANAGEMENT

UNIX System V makes use of a simple but powerful process facility that is highly

visible to the user. UNIX follows the model of Figure 3.15b, in which most of the OS

executes within the environment of a user process. UNIX uses two categories of pro-

cesses: system processes, and user processes. System processes run in kernel mode and

execute operating system code to perform administrative and housekeeping func-

tions, such as allocation of memory and process swapping. User processes operate

in user mode to execute user programs and utilities, and in kernel mode to execute

instructions that belong to the kernel. A user process enters kernel mode by issuing

a system call, when an exception (fault) is generated, or when an interrupt occurs.

Process States

A total of nine process states are recognized by the UNIX SVR4 operating system;

these are listed in Table 3.9, and a state transition diagram is shown in Figure 3.17

(based on the figure in [BACH86]). This figure is similar to Figure 3.9b, with the two

UNIX sleeping states corresponding to the two blocked states. The differences are

as follows:

UNIX employs two Running states to indicate whether the process is executing

in user mode or kernel mode.

A distinction is made between the two states: (Ready to Run, in Memory) and

(Preempted). These are essentially the same state, as indicated by the dotted

User Running Executing in user mode.

Kernel Running Executing in kernel mode.

Ready to Run, in
Memory

Ready to run as soon as the kernel schedules it.

Asleep in Memory Unable to execute until an event occurs; process is in main memory (a blocked state).

Ready to Run,
Swapped

Process is ready to run, but the swapper must swap the process into main memory

before the kernel can schedule it to execute.

Sleeping, Swapped The process is awaiting an event and has been swapped to secondary storage (a

blocked state).

Preempted Process is returning from kernel to user mode, but the kernel preempts it and does a

process switch to schedule another process.

Created Process is newly created and not yet ready to run.

Zombie Process no longer exists, but it leaves a record for its parent process to collect.

Table 3.9 UNIX Process States

电子工业出版社版权所有

 盗
版必究

3.6 / UNIX SVR4 PROCESS MANAGEMENT 139

line joining them. The distinction is made to emphasize the way in which the

Preempted state is entered. When a process is running in kernel mode (as a

result of a supervisor call, clock interrupt, or I/O interrupt), there will come a

time when the kernel has completed its work and is ready to return control to

the user program. At this point, the kernel may decide to preempt the current

process in favor of one that is ready and of higher priority. In that case, the cur-

rent process moves to the Preempted state. However, for purposes of dispatch-

ing, those processes in the Preempted state and those in the (Ready to Run, in

Memory) state form one queue.

Preemption can only occur when a process is about to move from kernel mode

to user mode. While a process is running in kernel mode, it may not be preempted.

This makes UNIX unsuitable for real-time processing. Chapter 10 will discuss the

requirements for real-time processing.

Two processes are unique in UNIX. Process 0 is a special process that is created

when the system boots; in effect, it is predefined as a data structure loaded at boot

time. It is the swapper process. In addition, process 0 spawns process 1, referred to as

the init process; all other processes in the system have process 1 as an ancestor. When

a new interactive user logs on to the system, it is process 1 that creates a user process

Fork

Not enough memory
(swapping system only)

Enough
memory

Swap in

Swap out

Swap out

WakeupWakeupSleep

Return

Preempt

Return
to user

System call,
interrupt

Exit

Reschedule
process

Interrupt,
interrupt return

Preempted
Created

Ready to run
swapped

Ready to run
in memory

Kernel
running

Zombie Asleep in
memory

Sleep,
swapped

User
running

Figure 3.17 UNIX Process State Transition Diagram

电子工业出版社版权所有

 盗
版必究

140 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

for that user. Subsequently, the user process can create child processes in a branch-

ing tree, so any particular application can consist of a number of related processes.

Process Description

A process in UNIX is a rather complex set of data structures that provide the OS

with all of the information necessary to manage and dispatch processes. Table 3.10

summarizes the elements of the process image, which are organized into three parts:

user-level context, register context, and system-level context.

The user-level context contains the basic elements of a user’s program and can

be generated directly from a compiled object file. The user’s program is separated into

text and data areas; the text area is read-only and is intended to hold the program’s

instructions. While the process is executing, the processor uses the user stack area for

procedure calls and returns and parameter passing. The shared memory area is a data

area that is shared with other processes. There is only one physical copy of a shared

memory area, but, by the use of virtual memory, it appears to each sharing process

that the shared memory region is in its address space. When a process is not running,

the processor status information is stored in the register context area.

The system-level context contains the remaining information that the OS

needs to manage the process. It consists of a static part, which is fixed in size and

User-Level Context

Process text Executable machine instructions of the program

Process data Data accessible by the program of this process

User stack Contains the arguments, local variables, and pointers for functions executing in user mode

Shared memory Memory shared with other processes, used for interprocess communication

Register Context

Program counter Address of next instruction to be executed; may be in kernel or user memory space of

this process

Processor status

register

Contains the hardware status at the time of preemption; contents and format are hard-

ware dependent

Stack pointer Points to the top of the kernel or user stack, depending on the mode of operation at the

time or preemption

General-purpose

registers

Hardware dependent

System-Level Context

Process table entry Defines state of a process; this information is always accessible to the operating system

U (user) area Process control information that needs to be accessed only in the context of the process

Per process region

table

Defines the mapping from virtual to physical addresses; also contains a permission

field that indicates the type of access allowed the process: read-only, read-write, or

read-execute

Kernel stack Contains the stack frame of kernel procedures as the process executes in kernel mode

Table 3.10 UNIX Process Image

电子工业出版社版权所有

 盗
版必究

3.6 / UNIX SVR4 PROCESS MANAGEMENT 141

stays with a process throughout its lifetime, and a dynamic part, which varies in

size through the life of the process. One element of the static part is the process

table entry. This is actually part of the process table maintained by the OS, with

one entry per process. The process table entry contains process control information

that is accessible to the kernel at all times; hence, in a virtual memory system, all

process table entries are maintained in main memory. Table 3.11 lists the contents

of a process table entry. The user area, or U area, contains additional process con-

trol information that is needed by the kernel when it is executing in the context of

this process; it is also used when paging processes to and from memory. Table 3.12

shows the contents of this table.

The distinction between the process table entry and the U area reflects the fact

that the UNIX kernel always executes in the context of some process. Much of the

time, the kernel will be dealing with the concerns of that process. However, some of

the time, such as when the kernel is performing a scheduling algorithm preparatory

to dispatching another process, it will need access to information about other pro-

cesses. The information in a process table can be accessed when the given process is

not the current one.

The third static portion of the system-level context is the per process region

table, which is used by the memory management system. Finally, the kernel stack is

the dynamic portion of the system-level context. This stack is used when the process

is executing in kernel mode, and contains the information that must be saved and

restored as procedure calls and interrupts occur.

Process status Current state of process.

Pointers To U area and process memory area (text, data, stack).

Process size Enables the operating system to know how much space to allocate the process.

User identifiers The real user ID identifies the user who is responsible for the running process. The effec-
tive user ID may be used by a process to gain temporary privileges associated with a

particular program; while that program is being executed as part of the process, the pro-

cess operates with the effective user ID.

Process identifiers ID of this process; ID of parent process. These are set up when the process enters the

Created state during the fork system call.

Event descriptor Valid when a process is in a sleeping state; when the event occurs, the process is trans-

ferred to a ready-to-run state.

Priority Used for process scheduling.

Signal Enumerates signals sent to a process but not yet handled.

Timers Include process execution time, kernel resource utilization, and user-set timer used to

send alarm signal to a process.

P link Pointer to the next link in the ready queue (valid if process is ready to execute).

Memory status Indicates whether process image is in main memory or swapped out. If it is in memory,

this field also indicates whether it may be swapped out or is temporarily locked into

main memory.

Table 3.11 UNIX Process Table Entry

电子工业出版社版权所有

 盗
版必究

142 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Process Control

Process creation in UNIX is made by means of the kernel system call, fork(). When

a process issues a fork request, the OS performs the following functions [BACH86]:

1. It allocates a slot in the process table for the new process.

2. It assigns a unique process ID to the child process.

3. It makes a copy of the process image of the parent, with the exception of any

shared memory.

4. It increments counters for any files owned by the parent, to reflect that an

additional process now also owns those files.

5. It assigns the child process to the Ready to Run state.

6. It returns the ID number of the child to the parent process, and a 0 value to

the child process.

All of this work is accomplished in kernel mode in the parent process. When

the kernel has completed these functions, it can do one of the following, as part of

the dispatcher routine:

Stay in the parent process. Control returns to user mode at the point of the fork

call of the parent.

Transfer control to the child process. The child process begins executing at the

same point in the code as the parent, namely at the return from the fork call.

Transfer control to another process. Both parent and child are left in the Ready

to Run state.

Process table pointer Indicates entry that corresponds to the U area.

User identifiers Real and effective user IDs used to determine user privileges.

Timers Record time that the process (and its descendants) spent executing in user mode and

in kernel mode.

Signal-handler array For each type of signal defined in the system, indicates how the process will react to

receipt of that signal (exit, ignore, execute specified user function).

Control terminal Indicates login terminal for this process, if one exists.

Error field Records errors encountered during a system call.

Return value Contains the result of system calls.

I/O parameters Describe the amount of data to transfer, the address of the source (or target) data

array in user space, and file offsets for I/O.

File parameters Current directory and current root describe the file system environment of the

process.

User file descriptor

table

Records the files the process has opened.

Limit fields Restrict the size of the process and the size of a file it can write.

Permission modes

fields

Mask mode settings on files the process creates.

Table 3.12 UNIX U Area

电子工业出版社版权所有

 盗
版必究

3.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 143

It is perhaps difficult to visualize this method of process creation because both

parent and child are executing the same passage of code. The difference is this: When

the return from the fork occurs, the return parameter is tested. If the value is zero,

then this is the child process, and a branch can be executed to the appropriate user

program to continue execution. If the value is nonzero, then this is the parent process,

and the main line of execution can continue.

3.7 SUMMARY

The most fundamental concept in a modern OS is the process. The principal function

of the OS is to create, manage, and terminate processes. While processes are active,

the OS must see that each is allocated time for execution by the processor, coordi-

nate their activities, manage conflicting demands, and allocate system resources to

processes.

To perform its process management functions, the OS maintains a description

of each process, or process image, which includes the address space within which the

process executes, and a process control block. The latter contains all of the informa-

tion that is required by the OS to manage the process, including its current state,

resources allocated to it, priority, and other relevant data.

During its lifetime, a process moves among a number of states. The most impor-

tant of these are Ready, Running, and Blocked. A ready process is one that is not cur-

rently executing, but that is ready to be executed as soon as the OS dispatches it. The

running process is that process that is currently being executed by the processor. In a

multiprocessor system, more than one process can be in this state. A blocked process

is waiting for the completion of some event, such as an I/O operation.

A running process is interrupted either by an interrupt, which is an event that

occurs outside the process and that is recognized by the processor, or by executing

a supervisor call to the OS. In either case, the processor performs a mode switch,

transferring control to an operating system routine. The OS, after it has completed

necessary work, may resume the interrupted process or switch to some other process.

3.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

blocked state

child process

dispatcher

exit state

interrupt

kernel mode

mode switch

new state

parent process

preempt

privileged mode

process

process control block

process control information

process image

process spawning

process switch

program status word

ready state

round-robin

running state

suspend state

swapping

system mode

task

time slice

trace

trap

user mode电子工业出版社版权所有

 盗
版必究

144 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Review Questions

3.1. What is an instruction trace?

3.2. Explain the concept of a process and mark its differences from a program.

3.3. For the processing model of Figure 3.6, briefly define each state.

3.4. What does it mean to preempt a process?

3.5. What is process spawning?

3.6. Why does Figure 3.9b have two blocked states?

3.7. List four characteristics of a suspended process.

3.8. For what types of entities does the OS maintain tables of information for management
purposes?

3.9. What are the elements of a process image?

3.10. Why are two modes (user and kernel) needed?

3.11. What are the steps performed by an OS to create a new process?

3.12. What is the difference between an interrupt and a trap?

3.13. Give three examples of an interrupt.

3.14. What is the difference between a mode switch and a process switch?

Problems

3.1. A system adopts a priority-based preemptive scheduling where the initial priority of
a process increases by 1 after every 5 ms. In a recorded time span, the system has four
processes, P1, P2, P3 and P4, as shown in the following table:

PROCESS
ID

INITIAL
PRIORITY

ARRIVAL TIME
IN MS

TOTAL CPU TIME IN
MS

P1 1 0 15

P2 3 5 7.5

P3 2 10 5

P4 2 15 10

 Draw a timing diagram similar to Figure 3.7 and find the turnaround time for each
process. Assume that the dispatcher takes 2.5 milliseconds for a process switch.

3.2. Suppose that four interleaved processes are running in a system having start addresses
4050, 3200, 5000 and 6700. The traces of the individual processes are as follows:

Process P1 Process P2 Process P3 Process P4

4050 3200 5000 6700

4051 3201 5001 6701

4052 3202 5002 6702

4053 3203 5003 <I/O>

4054 3204 5004

4055 3205 5005

4056 3206 5006

4057 <I/O> 5007

4058 5008

4059 5009

4060 5010电子工业出版社版权所有

 盗
版必究

3.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 145

 Find the interleaved traces of the processes. Assume that the dispatcher is invoked after
5 instructions or for interrupts and the dispatcher cycle has 4 instructions.

3.3. Figure 3.9b contains seven states. In principle, one could draw a transition between any
two states, for a total of 42 different transitions.

a. List all of the possible transitions and give an example of what could cause each
transition.

b. List all of the impossible transitions and explain why.

3.4. For the seven-state process model of Figure 3.9b, draw a queueing diagram similar to
that of Figure 3.8b.

3.5. Consider the state transition diagram of Figure 3.9b. Suppose it is time for the OS to dis-
patch a process and there are processes in both the Ready state and the Ready/Suspend
state, and at least one process in the Ready/Suspend state has higher scheduling prior-
ity than any of the processes in the Ready state. Two extreme policies are as follows:
(1) Always dispatch from a process in the Ready state, to minimize swapping, and
(2) always give preference to the highest-priority process, even though that may mean
swapping when swapping is not necessary. Suggest an intermediate policy that tries to
balance the concerns of priority and performance.

3.6. Table 3.13 shows the process states for the VAX/VMS operating system.

a. Can you provide a justification for the existence of so many distinct wait states?

b. Why do the following states not have resident and swapped-out versions: Page
Fault Wait, Collided Page Wait, Common Event Wait, Free Page Wait, and Resource
Wait?

Process State Process Condition

Currently Executing Running process.

Computable (resident) Ready and resident in main memory.

Computable (outswapped) Ready, but swapped out of main memory.

Page Fault Wait Process has referenced a page not in main memory and must wait for the

page to be read in.

Collided Page Wait Process has referenced a shared page that is the cause of an existing page

fault wait in another process, or a private page that is in the process of

being read in or written out.

Common Event Wait Waiting for shared event flag (event flags are single-bit interprocess sig-

naling mechanisms).

Free Page Wait Waiting for a free page in main memory to be added to the collection of

pages in main memory devoted to this process (the working set of the

process).

Hibernate Wait (resident) Process puts itself in a wait state.

Hibernate Wait (outswapped) Hibernating process is swapped out of main memory.

Local Event Wait (resident) Process in main memory and waiting for local event flag (usually I/O

completion).

Local Event Wait (outswapped) Process in local event wait is swapped out of main memory.

Suspended Wait (resident) Process is put into a wait state by another process.

Suspended Wait (outswapped) Suspended process is swapped out of main memory.

Resource Wait Process waiting for miscellaneous system resource.

Table 3.13 VAX/VMS Process States

电子工业出版社版权所有

 盗
版必究

146 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

c. Draw the state transition diagram and indicate the action or occurrence that causes
each transition.

3.7. The VAX/VMS operating system makes use of four processor access modes to facili-
tate the protection and sharing of system resources among processes. The access mode
determines:

Instruction execution privileges: What instructions the processor may execute

Memory access privileges: Which locations in virtual memory the current instruc-
tion may access

The four modes are as follows:

Kernel: Executes the kernel of the VMS operating system, which includes memory
management, interrupt handling, and I/O operations.

Executive: Executes many of the OS service calls, including file and record (disk
and tape) management routines.

Supervisor: Executes other OS services, such as responses to user commands.

User: Executes user programs, plus utilities such as compilers, editors, linkers, and
debuggers.

A process executing in a less-privileged mode often needs to call a procedure that
executes in a more-privileged mode; for example, a user program requires an operat-
ing system service. This call is achieved by using a change-mode (CHM) instruction,
which causes an interrupt that transfers control to a routine at the new access mode. A
return is made by executing the REI (return from exception or interrupt) instruction.

a. A number of operating systems have two modes: kernel and user. What are the
advantages and disadvantages of providing four modes instead of two?

b. Can you make a case for even more than four modes?

Kernel

Executive

Supervisor

User

REICHM
x

Figure 3.18 VAX/VMS Access Modes电子工业出版社版权所有

 盗
版必究

3.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 147

3.8. The VMS scheme discussed in the preceding problem is often referred to as a ring pro-
tection structure, as illustrated in Figure 3.18. Indeed, the simple kernel/user scheme, as
described in Section 3.3, is a two-ring structure. A potential disadvantage of this protec-
tion structure is that it cannot readily be used to enforce a “need-to-know” principle.
[SILB04] gives this example: If an object is accessible in domain Dj but not in domain
Di, then j 6 i. But this means that every object accessible in Di is also accessible in Dj.
Explain clearly what the problem is that is referred to in the preceding paragraph.

3.9. Figure 3.8b suggests that a process can only be in one event queue at a time.

a. Is it possible that you would want to allow a process to wait on more than one event
at the same time? Provide an example.

b. In that case, how would you modify the queueing structure of the figure to support
this new feature?

3.10. What is the purpose of the system call fork() in the UNIX operating system? Write a
C routine to create a child process using the fork() system call. Incorporate an error
check in your routine in case the creation of the child process fails.

3.11. What are the specialities of Process 0 and Process 1 in UNIX? Which command will
you use to get information about the running processes in the system?

3.12. You have executed the following C program:

main ()

{ int pid;

pid = fork ();

printf (“%d \n”, pid);

}

What are the possible outputs, assuming the fork succeeded?

电子工业出版社版权所有

 盗
版必究

