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C H A P T E R

3
The z-Transform and Its
Application to the Analysis
of LTI Systems

Transform techniques are an important tool in the analysis of signals and linear
time-invariant (LTI) systems. In this chapter we introduce the z-transform, develop
its properties, and demonstrate its importance in the analysis and characterization
of linear time-invariant systems.

The z-transform plays the same role in the analysis of discrete-time signals
and LTI systems as the Laplace transform does in the analysis of continuous-time
signals and LTI systems. For example, we shall see that in the z-domain (complex
z-plane) the convolution of two time-domain signals is equivalent to multiplication
of their corresponding z-transforms. This property greatly simplifies the analysis
of the response of an LTI system to various signals. In addition, the z-transform
provides us with a means of characterizing an LTI system, and its response to various
signals, by its pole–zero locations.

We begin this chapter by defining the z-transform. Its important properties are
presented in Section 3.2. In Section 3.3 the transform is used to characterize signals
in terms of their pole–zero patterns. Section 3.4 describes methods for inverting the
z-transform of a signal so as to obtain the time-domain representation of the signal.
Section 3.5 is focused on the use of the z-transform in the analysis of LTI systems.
Finally, in Section 3.6, we treat the one-sided z-transform and use it to solve linear
difference equations with nonzero initial conditions.

3.1 The z-Transform

In this section we introduce the z-transform of a discrete-time signal, investigate its
convergence properties, and briefly discuss the inverse z-transform.
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3.1 The z-Transform 123

3.1.1 The Direct z-Transform

The z-transform of a discrete-time signal x(n) is defined as the power series

X (z) ≡
∞∑

n=−∞
x(n)z−n (3.1.1)

where z is a complex variable. The relation (3.1.1) is sometimes called the direct z-
transform because it transforms the time-domain signal x(n) into its complex-plane
representation X (z). The inverse procedure [i.e., obtaining x(n) from X (z)] is called
the inverse z-transform and is examined briefly in Section 3.1.2 and in more detail in
Section 3.4.

For convenience, the z-transform of a signal x(n) is denoted by

X (z) ≡ Z{x(n)} (3.1.2)

whereas the relationship between x(n) and X (z) is indicated by

x(n)
z←→ X (z) (3.1.3)

Since the z-transform is an infinite power series, it exists only for those values of
z for which this series converges. The region of convergence (ROC) of X (z) is the
set of all values of z for which X (z) attains a finite value. Thus any time we cite a
z-transform we should also indicate its ROC.

We illustrate these concepts by some simple examples.

EXAMPLE 3.1.1

Determine the z-transforms of the following finite-duration signals.

(a) x1(n) = {1↑, 2, 5, 7, 0, 1}
(b) x2(n) = {1, 2, 5↑, 7, 0, 1}
(c) x3(n) = {0↑, 0, 1, 2, 5, 7, 0, 1}
(d) x4(n) = {2, 4, 5↑, 7, 0, 1}
(e) x5(n) = δ(n)
(f) x6(n) = δ(n − k), k > 0

(g) x7(n) = δ(n + k), k > 0

Solution. From definition (3.1.1), we have

(a) X1(z) = 1+ 2z−1 + 5z−2 + 7z−3 + z−5, ROC: entire z-plane except z = 0

(b) X2(z) = z2 + 2z + 5+ 7z−1 + z−3, ROC: entire z-plane except z = 0 and z = ∞
(c) X3(z) = z−2 + 2z−3 + 5z−4 + 7z−5 + z−7, ROC: entire z-plane except z = 0

(d) X4(z) = 2z2 + 4z + 5+ 7z−1 + z−3, ROC: entire z-plane except z = 0 and z = ∞
(e) X5(z) = 1 [i.e., δ(n)

z←→ 1], ROC: entire z-plane

(f) X6(z) = z−k [i.e., δ(n − k)
z←→ z−k ], k > 0, ROC: entire z-plane except z = 0

(g) X7(z) = zk [i.e., δ(n + k)
z←→ zk ], k > 0, ROC: entire z-plane except z = ∞
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124 Chapter 3 The z-Transform and Its Application to the Analysis of LTI Systems

From this example it is easily seen that the ROC of a finite-duration signal is the
entire z-plane, except possibly the points z = 0 and/or z = ∞. These points are
excluded, because zk (k > 0) becomes unbounded for z = ∞ and z−k (k > 0)
becomes unbounded for z = 0.

From a mathematical point of view the z-transform is simply an alternative
representation of a signal. This is nicely illustrated in Example 3.1.1, where we see
that the coefficient of z−n , in a given transform, is the value of the signal at time n.
In other words, the exponent of z contains the time information we need to identify
the samples of the signal.

In many cases we can express the sum of the finite or infinite series for the
z-transform in a closed-form expression. In such cases the z-transform offers a
compact alternative representation of the signal.

EXAMPLE 3.1.2

Determine the z-transform of the signal

x(n) =
(

1
2

)n

u(n)

Solution. The signal x(n) consists of an infinite number of nonzero values

x(n) =
{

1,
(

1
2

)
,
(

1
2

)2

,
(

1
2

)3

, . . . ,
(

1
2

)n

, . . .

}

The z-transform of x(n) is the infinite power series

X (z) = 1+ 1
2

z−1 +
(

1
2

)2

z−2 +
(

1
2

)n

z−n + · · ·

=
∞∑

n=0

(
1
2

)n

z−n =
∞∑

n=0

(
1
2

z−1
)n

This is an infinite geometric series. We recall that

1+ A + A2 + A3 + · · · = 1
1− A

if |A| < 1

Consequently, for
∣∣∣ 1

2 z−1
∣∣∣ < 1, or equivalently, for |z| > 1

2 , X (z) converges to

X (z) = 1

1− 1
2

z−1
, ROC: |z| > 1

2

We see that in this case, the z-transform provides a compact alternative representation of the
signal x(n).
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3.1 The z-Transform 125

Let us express the complex variable z in polar form as

z = re jθ (3.1.4)

where r = |z| and θ = �z. Then X (z) can be expressed as

X (z)|z=re jθ =
∞∑

n=−∞
x(n)r−ne− jθn

In the ROC of X (z), |X (z)| <∞. But

|X (z)| =
∣∣∣∣∣
∞∑

n=−∞
x(n)r−ne− jθn

∣∣∣∣∣
≤

∞∑
n=−∞

|x(n)r−ne− jθn| =
∞∑

n=−∞
|x(n)r−n|

(3.1.5)

Hence |X (z)| is finite if the sequence x(n)r−n is absolutely summable.
The problem of finding the ROC for X (z) is equivalent to determining the range

of values of r for which the sequence x(n)r−n is absolutely summable. To elaborate,
let us express (3.1.5) as

|X (z)| ≤
−1∑

n=−∞
|x(n)r−n| +

∞∑
n=0

∣∣∣∣ x(n)

rn

∣∣∣∣
≤
∞∑

n=1

|x(−n)rn| +
∞∑

n=0

∣∣∣∣ x(n)

rn

∣∣∣∣
(3.1.6)

If X (z) converges in some region of the complex plane, both summations in (3.1.6)
must be finite in that region. If the first sum in (3.1.6) converges, there must exist
values of r small enough such that the product sequence x(−n)rn , 1 ≤ n < ∞, is
absolutely summable. Therefore, the ROC for the first sum consists of all points
in a circle of some radius r1, where r1 < ∞, as illustrated in Fig. 3.1.1(a). On the
other hand, if the second sum in (3.1.6) converges, there must exist values of r large
enough such that the product sequence x(n)/rn , 0 ≤ n <∞, is absolutely summable.
Hence the ROC for the second sum in (3.1.6) consists of all points outside a circle
of radius r > r2, as illustrated in Fig. 3.1.1(b).

Since the convergence of X (z) requires that both sums in (3.1.6) be finite, it
follows that the ROC of X (z) is generally specified as the annular region in the
z-plane, r2 < r < r1, which is the common region where both sums are finite. This
region is illustrated in Fig. 3.1.1(c). On the other hand, if r2 > r1, there is no common
region of convergence for the two sums and hence X (z) does not exist.

The following examples illustrate these important concepts.
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126 Chapter 3 The z-Transform and Its Application to the Analysis of LTI Systems

Figure 3.1.1
Region of convergence for
X (z) and its corresponding
causal and anticausal
components.
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EXAMPLE 3.1.3

Determine the z-transform of the signal

x(n) = αnu(n) =
{
αn , n ≥ 0
0, n < 0

Solution. From the definition (3.1.1) we have

X (z) =
∞∑

n=0

αnz−n =
∞∑

n=0

(αz−1)n

If |αz−1| < 1 or equivalently, |z| > |α|, this power series converges to 1/(1 − αz−1). Thus we
have the z-transform pair
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Im(z)

Re(z)

(b)(a)

ROC

|a|

0

x(n)

1 2 3 4 5 n

…

…

0

Figure 3.1.2 The exponential signal x(n) = αnu(n) (a), and the ROC of its
z-transform (b).

x(n) = αnu(n)
z←→ X (z) = 1

1− αz−1
, ROC: |z| > |α| (3.1.7)

The ROC is the exterior of a circle having radius |α|. Figure 3.1.2 shows a graph of the signal
x(n) and its corresponding ROC. Note that, in general, α need not be real.

If we set α = 1 in (3.1.7), we obtain the z-transform of the unit step signal

x(n) = u(n)
z←→ X (z) = 1

1− z−1
, ROC: |z| > 1 (3.1.8)

EXAMPLE 3.1.4

Determine the z-transform of the signal

x(n) = −αnu(−n − 1) =
{

0, n ≥ 0
−αn , n ≤ −1

Solution. From the definition (3.1.1) we have

X (z) =
−1∑

n=−∞
(−αn)z−n = −

∞∑
l=1

(α−1z)l

where l = −n. Using the formula

A + A2 + A3 + · · · = A(1+ A + A2 + · · · ) = A

1− A
when |A| < 1 gives

X (z) = − α−1z

1− α−1z
= 1

1− αz−1

provided that |α−1z| < 1 or, equivalently, |z| < |α|. Thus

x(n) = −αnu(−n − 1)
z←→ X (z) = − 1

1− αz−1
, ROC: |z| < |α| (3.1.9)

The ROC is now the interior of a circle having radius |α|. This is shown in Fig. 3.1.3.
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Im(z)

Re(z)

(b)(a)

ROC

|a|0

x(n)

�5 �4 �3 �2 �1

n

…

…

0 < a < 1

Figure 3.1.3 Anticausal signal x(n) = −αnu(−n − 1) (a), and the ROC of its
z-transform (b).

Examples 3.1.3 and 3.1.4 illustrate two very important issues. The first concerns
the uniqueness of the z-transform. From (3.1.7) and (3.1.9) we see that the causal
signal αnu(n) and the anticausal signal −αnu(−n − 1) have identical closed-form
expressions for the z-transform, that is,

Z{αnu(n)} = Z{−αnu(−n − 1)} = 1
1− αz−1

This implies that a closed-form expression for the z-transform does not uniquely
specify the signal in the time domain. The ambiguity can be resolved only if in
addition to the closed-form expression, the ROC is specified. In summary, a discrete-
time signal x(n) is uniquely determined by its z-transform X (z) and the region of
convergence of X (z). In this text the term “z-transform” is used to refer to both the
closed-form expression and the corresponding ROC. Example 3.1.3 also illustrates
the point that the ROC of a causal signal is the exterior of a circle of some radius r2
while the ROC of an anticausal signal is the interior of a circle of some radius r1. The
following example considers a sequence that is nonzero for −∞ < n <∞.

EXAMPLE 3.1.5

Determine the z-transform of the signal

x(n) = αnu(n)+ bnu(−n − 1)

Solution. From definition (3.1.1) we have

X (z) =
∞∑

n=0

αnz−n +
−1∑

n=−∞
bnz−n =

∞∑
n=0

(αz−1)n +
∞∑

l=1

(b−1z)l

The first power series converges if |αz−1| < 1 or |z| > |α|. The second power series converges
if |b−1z| < 1 or |z| < |b|.

In determining the convergence of X (z), we consider two different cases.
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3.1 The z-Transform 129

Figure 3.1.4
ROC for z-transform in
Example 3.1.5.
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z-plane

|b| < |a|
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|a| < |b|

|b|

|a|

(b)

(a)

|b|

|a|

Case 1 |b| < |α|: In this case the two ROC above do not overlap, as shown in Fig. 3.1.4(a).
Consequently, we cannot find values of z for which both power series
converge simultaneously. Clearly, in this case, X (z) does not exist.

Case 2 |b| > |α|: In this case there is a ring in the z-plane where both power series converge
simultaneously, as shown in Fig. 3.1.4(b). Then we obtain

X (z) = 1
1− αz−1

− 1
1− bz−1

= b − α
α + b − z − αbz−1

(3.1.10)

The ROC of X (z) is |α| < |z| < |b|.

This example shows that if there is a ROC for an infinite-duration two-sided
signal, it is a ring (annular region) in the z-plane. From Examples 3.1.1, 3.1.3, 3.1.4,
and 3.1.5, we see that the ROC of a signal depends both on its duration (finite
or infinite) and on whether it is causal, anticausal, or two-sided. These facts are
summarized in Table 3.1.

One special case of a two-sided signal is a signal that has infinite duration on
the right side but not on the left [i.e., x(n) = 0 for n < n0 < 0]. A second case is a
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