E3E

b b

Spark SQL k& ibs

m‘%"—ﬂ B#R
(%ﬂiﬂﬁﬁi

I2# DataFrame BEAXRIEFE AR AL (£E/CSV XHE)
o Z1R DataFrame & E, URIIEZTWFLIEFE
o E1Z DataFrame #{ & FH SQL &if
e T f# Spark 3B AL
o Tf# RDD. DataFrame. Dataset Z[8/f)FEFIB B #H X R

(ﬁ%ﬂ B #5

o £ Spark SQL R A O1E B 4eitiniR
o £ A Spark SQL ST B IL) E3E
o £{$ 8 Spark SQL 4h B E A Y EHE >4 (8] 88

(ilﬁﬁﬁ

. BHREFNSIFEHE I IR
o S5 R AFBBE A MR
o I ERRERISRA0 5 IR

Spark XEEH RSN A (Scala k) —&F Hadoop 3.3+Spark 3.5

3.1 5

il

Spark SQL J& FHRALH “Z5H91bEE” MThREALT:, $Ept T —Fhisin) 255040 U5 0 7
%, XFF CSV. JSON, Parquet. Hive, JDBC S5%#la2iAl . ridshtafb s, Iefg L [
FERG I AR AV BR SR i s, AT A0 b e ST B I JE A, BB R AR X
(schema) ##fi. Spark SQL %1 DataFrame SZHF E 44T SQL 154, 7440 SQL £
WIS, ST S B B EEAL], Spark SQL 1 X TLaE R iME SQL /4] 5 Spark
PR G S s, VPSS A b 28 U2 1) RDD 43 A UBRAE , X fh B3 A
B P2 iz T SQL #ify, DAKPITE 22k

Spark SQL AU AR%ES FEALFE . 55—, 5| A DataFrame/Dataset {8257, HAHY T
TFBEE R RDD, AT DRSS PR — e SR aste s S, TE AR]
DR G RR IR R, Fe ik B JSON A fik B MySQL SR AT el &
It =, NE TARRIHESE, 8 SQL BN RDD HZ AT, FEIRZ5 R
RHHA

3.2 DataFrame E&EFIE

W 2 FAY2E I AIHL, RDD J2& Spark AY—MZO NS, WIEFEAS Spark HESLAYIES .
RDD Wy Spark SEIUr A AR T —MEF IS BAREAL, (Hd A —2 R BRYE, Lhan
WA W B SBR[, SIS 2 A OSCF R 5 , &1 RDD itk B
S E A, XEEA S B A E R —TOT R, ORI R) R AR AL A
2T, Spark SQL >Rk H T DataFrame £, B & Eda &5 40y, @i Spark SQL #
HERRERE DB REIRTH A OC RDD WIEIRZ AP TR S5 S, AIMifiifS Spark AT LAXS
DataFrame FYEE TR LA NAE T DataFrame BOEESATIAL , SFHETHTERCRA H Y. Spark
SQL HAS AP AALLE AL E I o fe /o, [RIBS e [b RDD B

WA F, DataFrame {3882 —F Ll RDD MR A/ B, I I wFR N
SchemaRDD, R4 FBt45H15 B RDD, DataFrame 7Efd] F2R LS BRI —4E 3,
TR TP RIR OSSR ANTEEEE . Hive 355, FrLA, FRATATLAT
A DataFrame PR N—oK 8%, B

DataFrame ({#f§3%) = schema (FEt45#)) + Data (£(#54T RDD)

RDD & — il RES, MR NI REHRESHRARAN, TFEstnt Tt
Ja A BERIELEAE R ANE, XS5 RDD BYBHE1E B 80CREHIK , DataFrame B4 —
SIERI T T B R A PRI, L T 1 RDD 5 I RERE, AT ASEEL RDD 4
KZHRE, AR AR H N5, 76 {] DataFrame YjgE /7 i%:5k SQL i) AbFEHET
Spark fifb a2 B B HGEATIL, RIMfigeS 9% EE SQL iHa)AEHIAR, Spark v AR P
RE RN T o

108

% 33F Spark SQL BH&KIELIE

BRIt ZAh, Spark iRt T —Fh Dataset g2, ‘AN DataFrame —FEA0 &840 Fl
FEEMER, 454 T RDD il DataFrame 05, BESZHRHMR 225 RDD IIRE 2%,
N Z#F DataFrame [T A#AE, i HEAIRE RDD, A TRCFFZS RIS A H R W E &, 7]
FHR 7 i M A BREE A AL R R 25 440 B . Dataset 7 DIAFHUT R ZEAYAIXT S, 24 Dataset /7%
B2 Row X4 (17) B, IAFERUA ST DataFrame, Frll, DataFrame SZf% [4& Dataset
B— M, RDD. DataFrame. Dataset =F &R UK 3-1 iR

BHSHRMIBE UAARARNS B HEE Encoderfi$37ht EiEEE
schema (FER4EHS) schema (SFEREEHD)

Person String Int Double Encoders.STRING() | Encoders.INT() | Encoders.DOUBLE()
Person String Int Double Encoders.STRING() | Encoders.INT() | Encoders.DOUBLE()
Person String Int Double Encoders.STRING() | Encoders.INT() | Encoders.DOUBLE()
Person String Int Double Encoders.STRING() | Encoders.INT() | Encoders.DOUBLE()
Person String Int Double Encoders.STRING() | Encoders.INT() | Encoders.DOUBLE()
Person String Int Double Encoders.STRING() | Encoders.INT() | Encoders.DOUBLE()

RDD[Person] DataFrame Dataset

e E— DEFIEIE

%] 3-1 RDD. DataFrame. Dataset =& %5

AN, Dataset 5 2l i #45E IVM XT LA B, Frlh e HEMUSZHF Scala Fl Java X PFf
JFEA R gRTEIE S o H Spark 2.2 FF4f, DataFrame £l Dataset fY API B 3EAS—, WA T
HHZETCIL, #RESLTE RDD HAliz I, [FIFFfES RDD #HTAH I A4, % &5 DataFrame 5
BAREERAL, P2 G W H 4 DataFrame #528 “$(#li %" K “DataFrame £#fi4E" .

3.3 Spark SQL & A#E

3.3.1 DataFrame HyE A<

1. {EA%EEEIE DataFrame
TEm SRS, 2% 2 Scala 26 K)i DataFrame JEAT IR ML, R 2
HH createDataFrame() J5 74 i] A1 2] — > DataFrame X4 o T 1 LA SE 5 > R Qo] 1] 4
DataFrame, 1% T Spark (1) [g2 RIHEWAIL G ki 0 25 B B a2
FIIF—A> Linux £k, 7EHHAT spark-shell #i74> LU 3 SparkShell 28 H R i Fedfds
val data = List(O METHES, B mdARE—-TANE
(11, "LingLing", 19, "Hangzhou"), B, MY TEIEEN—1T, B—&Kid®
(22, "MeiMei", 22, "Shanghai"),

(33, "Sansan", 23, "Nanjing"))

val df = spark.createDataFrame (data) . O Q) pataFrame, T TFESN,
toDF ("id", "name", "age", "address") Spark BRI A BlhHE T 25 - B R S 7

df.getClass & getClass () FEMT BRI GAS A

df.count O BRBL df R EIEITEL

df . show O BaREEENE, AR Z WoR 20 17

df .printSchema O Fil df WMRWFBEEEER

109

Spark XEEH RSN A (Scala k) —&F Hadoop 3.3+Spark 3.5

scala>
> = i N =) % v
SCRIeRs VRN, GRS IRSEl PR BRI BATRES, RAEE
| (11, "LingLing", 19, "Hangzhou"), S A Z AT A 3 B
| (22, "MeiMei", 22, "Shanghai"), MY, AFEA, TR

| (33, "Sansan", 23, "Nanjing"))
ddata: List[(Int, String, Int, String)] = List((11l,LinglLing,19,Hangzhou), (22,Me
iMei, 22, Shanghai), (33,Sansan,23,Nanjing))
scala> val df = spark.createDataFrame (data) .toDF ("id", "name", "age", "address")
df: org.apache.spark.sgl.DataFrame = [id: int, name: string ... 2 more fields]
scala> df.getClass
res3: Class|[_ <: org.apache.spark.sqgl.DataFrame] = class org.apache.spark.sqgl.
Dataset
scala> df.count
res4: Long = 3
scala> df.show
Fo—— ot +
| id] name|age| address]|
Fo—m e —— Fom o —— +
11	LingLing	19	Hangzhou
22	MeiMei	22]	Shanghai
33	Sansan	23	Nanjingl
R ot +

scala> df.printSchema

root
|-- id: integer (nullable = false) T FBA . BIRER . FRURE A A
|-- name: string (nullable = true)
|-- age: integer (nullable = false)
|-- address: string (nullable = true)
scala>

XL, data FIRAE 3 DAMGEE (GTdl$ds), BATEA 4 M7, @i
createDataFrame() /77 | 7#-—> org.apache.spark.sql.DataFrame ZRFAGXT4E, count()F1 show()
T3S I 4 e BB A T ORI N %5 , printSchema() 7 ¥ H] 7744 DataFrame X 42)5
Bt s B ok, HorpfY id F age 1 Spark [Zh#fEWT A integer 287, name F1 address H
Spark H ST A string 287, #5571) nullable=true/false 18R IZFBHER FLIFNZS

T B R JE, createDataFrame() /72 /&1l spark X4 (SparkSession 27) i FHAY,
AL AT R RDD B FHAY sc X4 (SparkContext 27), 5Pk I+, SparkSession EL4:
K Spark 2.0 ZJ5 N HFEF IS — A F i, i THEA RIS T X Spark iz 7 5515 A],
1M H. sc Xf G n] Lhilid SparkSession 1381, 40

rddl = sc.parallelize([1,2,3,4])
rddl = spark.sparkContext.parallelize([1,2,3,4])

TEX AT K, sc 5 spark.sparkContext SZF5 2S5 M1 o

110

% 3% Spark SQL B&HEALIE

[#338R]
K45 Spark L RAAEFBS, ZEF%—1A SparkSession k#EAE Spark 89 &Frohk, Rk
Spark - na A 8942 5 X AB A%) SparkContexto

B T createDataFrame() /77419 H 2 BIHEWT LG 0 BB, FRATE T LA
i 3F—> Scala PIFEBIZERBEE LR W EHESAL,

case class Person(id: Long, name: String, age: Int, address: String)
O XHENLT— Person ¥iffI2E (case class), fU7% id. name. age. address % 4 PG48
o Scala WREBIZRG A RAREEERR BT, TR e L — R EE R
val data = List(& 35—~ Person RRITTE MR
Person (11, "LingLing", 19, "Hangzhou"),
Person (22, "MeiMei", 22, "Shanghai"),
Person (33, "Sansan", 23, "Nanjing"))

val df = spark.createDataFrame (data) C’ﬂﬁiiList{NEEDataFrame
df . show O R df MERIEIE N A
df.printSchema O Hh B E R

scala>

scala> case class Person(id: Long, name: String, age: Int, address: String)
defined class Person it Person FEBIEXT R A1, 1I2Hg new XobET:
scala> val data = List(
| Person (11, "LingLing", 19, "Hangzhou"),
| Person (22, "MeiMei", 22, "Shanghai"),
| Person (33, "Sansan", 23, "Nanjing"))
data: List[Person] = List(Person(ll,LinglLing,19,Hangzhou), Person(22,MeiMei,
22,Shanghai), Person(33,Sansan,23,Nanjing))
scala> val df = spark.createDataFrame (data)
df: org.apache.spark.sgl.DataFrame = [id: Dbigint, name: string ... 2 more
fields]
scala> df.show
R ot +
| id] name |age| address|
ot ot +
11	LingLing	19	Hangzhou
22	MeiMei	22]	Shanghai
33	Sansan	23	Nanjing
Fo— ot +			
scala> df.printSchema			
root			
-- id: long (nullable = false)			
-- name: string (nullable = true)			
-- age: integer (nullable = false)			
-- address: string (nullable = true)			

scala>

111

Spark XEEH RSN A (Scala k) —&F Hadoop 3.3+Spark 3.5

% HLE Y Person FEIIZEFES T DataFrame B FEZEME R, mILal IF S, Spark A

YRR SERU) ﬁ%’éﬂfnuﬁ’w@}ﬁﬁAﬁ DataFrameo
H4h, DataFrame FIF S HE Bif

import org.apache.spark.sqgl.Row

import org.apache.spark.sql.types.

val data = List(

Row (11, "LingLing", 19, "Hangzhou"),
Row (22, "MeiMei", 22, "Shanghai"),
Row (33, "Sansan", 23, "Nanjing"))

val myrdd = sc.parallelize (data)

val myschema = (new StructType).

add("id", "int", true).

add ("name", "string", true).

add ("age", "int", true).

add ("address", "string", true)
val df = spark.createDataFrame (myrdd, myschema)
df.show

i1t StructType K, FHZE—1

BRI,
O FARowZE, UM org. apache.
spark.sql.typesfﬁﬁﬁ@@?ﬁgé

& FEX—A Row KELTERFE, I
FHAEA A rROD, AAIE DataFrame
A

BWOERIR FERAMER, A5
&%\ﬁﬁﬁﬂ\%&%ﬁﬁﬁﬁﬁ
O structType fUERLEHZEA!, int
FNEEA string i'%/%???% s
true F/RAFAZ

< it myrdd Ml myschema A7

DataFrame

df .printSchema

scala>

scala> import org.apache.spark.sqgl.Row
import org.apache.spark.sgl.Row

scala> import org.apache.spark.sgl.types.
import org.apache.spark.sgl.types.

scala> val data = List(

| Row (11, "LingLing", 19, "Hangzhou"), Row X4, UE—175E

| Row (22, "MeiMei", 22, "Shanghai"),

| Row (33, "Sansan", 23, "Nanjing"))
data: List[org.apache.spark.sgl.Row] = List([11l,LingLing,19,Hangzhou], [22,MeiM
ei,22,Shanghai], [33,Sansan,23,Nanjing])
scala> val myrdd = sc.parallelize (data)
myrdd: org.apache.spark.rdd.RDD[org.apache.spark.sgl.Row] = ParallelCollection
RDD[0] at parallelize at <console>:28

scala> val myschema = (new StructType) .

| add ("id", "int", true). ‘)

| 2dd ("name", "string", true) it 0 R, P
! ! ’ add() 7 i RIS I Bt (5 8

| add ("age", "int", true).

| add ("address", "string", true)

myschema: org.apache.spark.sqgl.types.StructType = StructType (StructField(id, In

tegerType, true), StructField (name, StringType, true), StructField(age, IntegerType,

true), StructField(address, StringType, true))

112

% 3 & Spark SQL EH&EELAE

scala> val df = spark.createDataFrame (myrdd, myschema)

df: org.apache.spark.sqgl.DataFrame = [id: int, name: string ... 2 more fields]
scala> df.show

Fo— et +

| id] name|age| address]|

-t +———t———— +

| 11|LingLing| 19|Hangzhou|

| 22| MeiMei| 22]|Shanghai |

| 33| Sansan| 23| Nanjing|

Fem et +

scala> df.printSchema

root
|-- id: integer (nullable = true)
|-- name: string (nullable = true)
|-- age: integer (nullable = true)
|-- address: string (nullable = true)
scala>

TE g, DataFrame 7B 454415 B il id StructType RiERY, StructType By add()
7??‘%E"J%ﬁ?ﬁ%ﬁﬁilﬁ@?&ﬁ*@fﬁu (StructField), 73R FEFB4 . FEEM, DI F B
BAVFNZE o X H myschema AF g AIRIE, 0T DAFRAR BT B9,

val myschema = StructType (
StructField ("id", IntegerType, true)

(

StructField ("name", StringType, true)
(
(

StructField ("age", IntegerType, true)
StructField ("address", StringType, true) :: Nil
)
e
val myschema = StructType (
List (

StructField("id", IntegerType, nullable = true),
StructField("name", StringType, nullable = true),
StructField ("age", IntegerType, nullable = true),
StructField("address", StringType, nullable = true)

[Z3R7R)

Scala %9 List =R L2 —Fbss R 4 M), ZEWFANATLETEMKENERITGEEL R,
KAL Py Nil TTREME A —ANTF) k&, % List 9—AF ik, Ha2EIN R KFmATE,

[REE %))

i 3 MR R IEAR, AIEE— AR BT7R) DataFrame, FfREE0E os Hk

113

Spark XEEHARENA (Scala) —&F Hadoop 3.3+Spark 3.5

+------- to---t-- -t +
|user_id|name|age|score|
+------- Rt S +
| a1|%F)L] 12| 56.5]
| az|/hNT| 15| 23.0]
| a3|/i8| 23| 84.0|
| a4|/\| 9] 93.5]
+------- R s S +

& Scala [%3] Scala— %%t % |
(1) ZERAEXT R EE R, XSS REIEn BARSEH], 2020, M5Bk, B x%
A B C RIS NS], Y T— R E X X a i M &7 AR AR .
(2) Scala 25 E LEHITNT

class Point(x0: Int, yO0: Int) {
var x: Int = x0

var y: Int = y0

def move(dx: Int, dy: Int) { /] BRI E
X = X + dx

y =y + dy

LIMUHEE LT —4 08 Point B2, HA A ISV x fly , KL —J0R BIERY
Jrik move(), G E AE—EIMIEEMIETT %o Scala MZEE XATLIASHL, HPHRNZ
ZH CHEAMZ HLEY x0 F1y0), ESHARHREA et al LA o

ok, AT LA new ARSELHMEELIBIEN G, FFIHAIXF R BTk, d&nl LAV
MR

val pt = new Point (10, 20);
pt.move (50, 50);

(3) Scala B4k KE Java B, #20HH extends JCHEF , N :
class Location(override wval x0: Int,
override wval y0: Int,

val z0: Int) extends Point (x0, y0) {

var z: Int = z0

def move(dx: Int, dy: Int, dz: Int) {

X = x + dx
y =y +dy
z = z + dz

XA Location ZR4E7K | Point 28, JEFRNAIS/FZE, BIE TR AT, Location ZRYEK |

114

% 3 & Spark SQL EH&EELAE

Point RHYPH LA T (x Ml y), I8 TG A8 2z, Scala BFIESS AR RACKIN T A
JEMER T, AEFRERARTFMR DA, X —5 5 Java tH.

2. {EM CSV 346l DataFrame

Spark SQL 32HL CSV U T4 HiF4 44 DataFrame AOMGEAE S Wi, XKk CSV
AT BRSSO S, SCIFR R TR — S e BB 0ok, Bl T BaN %S
FHIZ 557 F%, Spark SQL AMUBEM A ZiR B L5 FafT , iR H Sl & F Be i BdR A . A
o, A CSV SUHFRYES 1 ATRbRE, WS 2 17 TFIR AR EE, A1 CSV U R HdiE
FEAR IR, T ATE O 2 D% o

T LA/ home/spark = H 5 H) peoplel.csv il people2.csv SCHA A, i 78 Ui{r] A CSV
SO B I H 458 DataFrame. 13235 AT B A TR ELX IS SR I AR 2 EIAL
e (Bd] vi SR AR 7R ERIALEY 3 B s rh B30). peoplel.csv il people2.csv SCHFRY N ZE
mr,

EJ peoplel. csvid | E people?. csvEd |
1 id, name, age,addreas 1 11,Lingling, 19, Hangzhou
2 11,LingLing, 1%, Hangzhou 2 22, MeiMei, 22, 5hanghal
3 22, MeiMei, 22, Shanghai 3 33, 5ansan, 23,Nanjing

- 33,5ansan, 23, Nanjing

1. SparkShell 52 5. A\ FEPA G i AR AL

val dfl = spark.read. & M peoplel.csv XU EEEUEE,
option ("header", "true"). header U FHRUIST, inferSchema
option("inferSchema", "true"). SHRFTRT B oM B 25 1
csv("file:///home/spark/peoplel.csv") & M people2.csv XX E R EUEL

val df2 = spark.read. ¥, BN EIRETT
csv("file:///home/spark/people2.csv") O ik A1 M A2 XA T B

dfl.printSchema B S AL B B P 2

df2.printSchema

dfl.show

df2.show

scala> val dfl = spark.read.
| option ("header", "true").
| option ("inferSchema", "true").
| csv("file:///home/spark/peoplel.csv")
dfl: org.apache.spark.sgl.DataFrame = [id: int, name: string ... 2 more fields]
scala> val df2 = spark.read.
| csv("file:///home/spark/people2.csv")
df2: org.apache.spark.sql.DataFrame = [cO: string, cl: string ... 2 more
fields]
scala> dfl.printSchema
root

|-- id: integer (nullable = true)

115

Spark XEEH RSN A (Scala k) —&F Hadoop 3.3+Spark 3.5

|-- name: string (nullable = true)
|-- age: integer (nullable = true)
|-- address: string (nullable = true)

scala> df2.printSchema

root ALEHREATI) CSV X, FEA AN 0, cl. c2. 3
nullable = true)

nullable = true)

nullable = true)

|-— c0: string

|-- cl: string

|-- c2: string

(
(
(
|-- c¢3: string (nullable = true)
scala> dfl.show
Fo—— et ———— Fo—— +
| id] name |age| address|

e T fommtmm— o +

| 11|LingLing| 19]|Hangzhou
| 22 MeiMei| 22]|Shanghai |
| 33| Sansan| 23| Nanjing|
e fom = +

scala> df2.show

| 11|LingLing| 19|Hangzhou|
| 22| MeiMei| 22]|Shanghai]
| 33| Sansan| 23] Nanjing]
fomm e fom = +

scala>

TEf] CSV SCFaNEE dfl i), sl option() i E T header Al inferSchema X ~%
%, XHFE Spark SQL #t4x A BMRBIARET T IFHENT & F B BHE AL, X df2 SRk, BA
people2.csv LA EHREAT, FrITEATIR B A MHIE T, FB4 M Spark SQL H 3k
E (IN_c0, el _c2 FEXFEMAAFR), BIERAERINN string, FEXFPREOLT, HHETHEAN
W FBRMZEE R, e s,

val myschema = "id long, name string, age int, address string"

val df2 = spark.read. O FEREMGERESN, BETEL. T
schema (myschema) . BRI RS M X
csv("file:///home/spark/people2.csv") & M people2.csv U EEEYE,

df2.printSchema TR BN myschema

df2.show

scala>

scala> val myschema = "id long, name string, age int, address string"

myschema: String = id long, name string, age int, address string
scala> val df2 = spark.read.

| schema (myschema) .

116

df2: org.apache.spark.sql.DataFrame

fields]

% 3 & Spark SQL EH&EELAE

csv("file:///home/spark/people2.csv")

scala> df2.printSchema

root

|-- id: long (nullable = true)

|-- name: string (nullable = true)
|-- age: integer (nullable = true)
|-- address: string (nullable = true)

scala> df2.show

Fo—— et ———— Fo—— +

| id] name|age| address|

Fo— ot +

| 11|LingLing| 19|Hangzhou|
22| MeiMei| 22]|Shanghai]
| 33| Sansan| 23| Nanjing|

o ———— o ———— +
scala>
[%38 7R]

[id: bigint, name: string ... 2 more

r R 1% 3| CSV LA AFAATH FE S A F XL, W T Ad it schema() 7 & £ #% €
FH A, WIN, EEA CSV A4 DataFrame B, £ VA58 option()7 iki% € F % e 4
#, QI XHHBE, TEORMDERT ZAAEILGLE T %,

val

cameraDF = spark.read
.option ("encoding", "GBK")
.option ("header", true)
.option ("inferSchema", true)

.option("sep", u,u)

/7 BOE SIS GBK AT, ARG ALY
/1 A E AR T
/7 B SR B RE e
// BCESTBRATRE S (Csv SCHBRIABCE)

.schema ("sxtid string, sxtxlh string") // R ETFES
.csv("hdfs:///data/camera info.csv") // SEEHESCH (HDFS SUAFBARHISCAESE)

[FEE%R>]]
15E A F PRI —A stus.csv SCF, XAFPES IR E, KON DataFrame.

E stus. csvEd |

A

3.3.2

user_ id,name,age, score
al, FJL,12,56.5
a2,/~T,15,23.0

a3, 18, 23,84.0

ad, Jd%,9,93.5

DataFrame & &

DataFrame H & 3 2 A HF A A LR A0 7 B M (5 8L . Bds N AX W7 mip 4, w6

117

Spark XEEH RSN A (Scala k) —&F Hadoop 3.3+Spark 3.5

HIAFE BT RN 3-1 frR. XEEHEFAE Action BT (Z5{L) RDD [Action &-F), H
‘BAITAT LA 3l Transformation 5+ A1 T -

% 3-1 DataFrame E AHIEEFEEFREEM

EFHEMAR IhREHEIA
printSchema it DataFrame [FBE5H5 R
columns (&) i& [8] DataFrame [7Bt %%
dtypes (JEE) JR[F] DataFrame [7Bt) 7B Al
count FRHX DataFrame AOECHETTEL
show YR DataFrame RSN A, I E WRTTEL, LARCHF B A IR 5 T i 7w
first, head 3RUR DataFrame (B 1740 A2, 3R 191 Row 88X 5
take, takeAsList FRHX DataFrame A n 778085 9%, 1R[] Row ZEAIXS G404
collect FREX DataFrame [T A T4 2, 1R IF Row KA 44, RGNS &
foreach B — TR TR € R AL B R EO TR S5 R, AE S >
foreachPartition 5 foreach &), {HE LA X RS b i AL SEER , %o 43 X HP A 5 g P Ak 2 R 5
THARIRA 4335 3-1 TR A B R T ME k. Jelis a2 11 DataFrame,
val data = List((6, "DingDing", 18, 88, "M"), O ETHES, KESA
(3, "KeKe", 18, 90, "F"M), NI IS

(2, "FeiFei", 16, 60, null),
(4, "JiaJdia", 24, 92, "M"),
(1, "MeiMei", 20, 95, "F"))

val df = spark.createDataFrame (data) . O MG data MIFEEEE
toDF ("id", "name", "age", "score", "gender") B DataFrame
scala>

scala> val data = List((6, "DingDing", 18, 88, "M"),

| (3, "KeKe", 18, 90, "E"),

| (2, "FeiFei", 16, 60, null),

| (4, "Jiadia", 24, 92, "M"),

| (1, "MeiMei", 20, 95, "F"))
data: List[(Int, String, Int, Int, String)] = List((6,DingDing,18,88,M), (3,KeKe,
18,90,F), (2,FeiFei,16,60,null), (4,JiaJdia,24,92,M), (1,MeiMei,20,95,F))
scala> val df = spark.createDataFrame (data) .

| toDF ("id", "name", "age", "score", "gender")

df: org.apache.spark.sqgl.DataFrame = [id: int, name: string ... 3 more fields]
scala>
T R P A, PAM columns, dtypes JE TR
df .printSchema () <O il DataFrame WFBREEIEE, HEILSEM B S
df.columns <& iRl bataFrame 5B, columns &—MEtk
df.dtypes & iR\l DataFrame TG M TF BRI, dtypes WE—EM
scala>

scala> df.printSchema ()

root

118

% 3% Spark SQL B&HEALIE

|-- id: integer (nullable = false)
|-- name: string (nullable = true)

|-- age: integer (nullable = false)

|-- score: integer (nullable = false)
|-- gender: string (nullable = true)
scala> df.columns
resl: Array[String] = Array(id, name, age, score, gender)
scala> df.dtypes
res2: Array[(String, String)] = Array((id,IntegerType), (name,StringType), (age,
IntegerType), (score,IntegerType), (gender,StringType))
scala>
df.count & 3 DataFrame MIEIRITEL
df.show & /R DataFrame MEHRNE, FINE/RET 20 17
df.show (2) O 8E IR DataFrame BYRITRHATEIE N A
df.show (2, false) & WRETPATEIR NS, B BINE RSB 20 74T, WAERT D

A~ (false FRAEMWT, true FREET)
scala>
scala> df.count
res3: Long = 5

scala> df.show

R e Fo——t————- +o————- +
| id]| name |age|score|gender |
R ot Fo————- +
| 6|DingDing| 18| 88 | M|
[3 KeKe| 18] 90 | F|
| 2] FeiFei| 16| 60| NULL|
| 4] Jiadial| 24| 92| M|
[1] MeiMei| 20| 95| Fl
Fo—— R it +-————- +
scala> df.show(2)
ot - +———— +
id| name | age | score|gender|
Fo—— et ———— ot to————- +
| 6|DingDing| 18| 88| M|
| 3] KeKe| 18] 90 | F|
Fo—— to——t————- +o————- +

L TR A7 B ARV 7L false SECHRBLR K R R
scala> df.show (2, false)

fo— Fo— - Fo———— +

|id |name |age|score|gender |

fom b Fom fo———— +

|6 |DingDing|18 [88 |M \

|3 |KeKe [18 190 | F |

e Fom - fo————- +

119

Spark XEEH RSN A (Scala k) —&F Hadoop 3.3+Spark 3.5

only showing top 2 rows

scala>

X HL show() 754k P IRIE T 2 HT, 5 B0 R it T8, LUECH FBIN A K
R AR s (RS i At BB AL) 25

df.first <& FREL DataFrame MEATEHRNE, &M Row FHINTS

df . take (2) O I pataFrame BT 2 fTHURAZ, RIE Row FHIXT R

df.collect <O JRI DataFrame WFTATTEIENE, 1R Row RIS GAH
scala>

scala> df.first

res7: org.apache.spark.sqgl.Row = [6,DingDing,18,88,M]

scala> df.take(2)

res8: Array[org.apache.spark.sgl.Row] = Array([6,DingDing,18,88,M], [3,KeKe,18,
90,F1)

scala> df.collect

res9: Array[org.apache.spark.sgl.Row] = Array([6,DingDing,18,88,M], [3,KeKe, 18,
90,F], [2,FeiFei,16,60,null]l, [4,Jiadia,24,92,M], [1,MeiMei,20,95,F])

scala>

L THZREAY DataFrame (381 71R M1 AR 2 Row RADNS R BN G804, &1 Row ZEAUNT
G JE AR X N AR T B BN 2
FTAIE 7N foreach B F RO B, SLBMRAS AR,

import org.apache.spark.sgl.Row O EX—ARE, AT PETEIR TR
AEERTAE 3% B name F BN A5,
def myprocess(x: Row): Unit = { KEFHIEA
val name = x.getString(l).toUpperCase & Row PIFEIFMN 0 iR, 1 3R
println (name) name FBt, WAlHEIT %&zgfﬁ%ﬁzﬁ
} O HEXREPT x.getString (1) %
MF x.getAs[String] ("name")
df.foreach(row => myprocess (row)) O i) foreach () EAHEETT AL
BN PR, myprocess (_) A FERIfL R :
df.foreach(myprocess(_)) myprocess
scala>

scala> import org.apache.spark.sqgl.Row

import org.apache.spark.sqgl.Row P 47 83 1Y toUpperCase() 15 7
scala> def myprocess(x: Row): Unit = { Bt name FEIMNAEFKICN KRS
| val name = x.getString(l) .toUpperCase TP

| println (name)

[}
myprocess: (x: org.apache.spark.sgl.Row)Unit
scala> df.foreach(row => myprocess (row))
DINGDING
KEKE
FEIFETI

120

% 3 & Spark SQL EH&EELAE

JIAJIA
MEIMET

scala>

Ja] foreach()J5 1Y H 12 X REAT BG4 T AL BT, ELARAE BT 72 2 LAE myprocess() bR
b

[%33R]

5 RDD %4, 42 R T ¥ DataFrame #9848 5 ANSHE B2 K 09 3-4F, SUBF 3L BIZH R4 A
foreachPartition 5, X2 F A CRAASR A EAsh T FLHIE, 42 RAE A foreach T,
W) FE A 32 B B B B AR B 3 — NI R A, A AW, AR R A A M) Ao X 4L
Ve Bk e AR I #E,

[BEE%S]]

53 T T DataFrame W) FBEMEE . FBA . BARITECRNEE 1 FEdR AR, Jf
fii] foreach() {24t R 44 2 A= 1 7 B 0 8 AR 7 X o ik o

e et T R +
|user_id|name|age|score]|
e et T R +
| a1l|)L] 12] 56.5]
| a2|/NT| 15| 23.0]
| a3|/ViB| 23| 84.0]
| a3|/\f&| 9| 93.5|
+o--m- - s +

3.3.3 DataFrame BY#i#E#E1E (DSL)

T DataFrame J£#: /. 7f RDD Ffl FiY, Hitk RDD AOIR L 55t /E AT s E7E
DataFrame HHI 2 SCRFRY , AUFRFEHRAE | 178 EX AR APL, EA19&EFR) DSL (Domain
Specific Language, ##&WUSIEF), Jibrit/e2Rfl RDD W51, FURS BRIy —Le75k/
PREL, W2 DataFrame MR EIL BAT3hHEAE, 7T LIARYEIR [A9 45 502 Spark SQL %l
A (N DataFrame 55) & 338 1 Scala BHRISARMfE . [AIFEHEL, DataFrame HYFEAERAE
WRIERPATH), HATEEEFT A T4 S E shit At e

HITEE W, AR SR S8 — A R 1A DataFrame, XJRAYZEHESS Sy df)
% (M H DataFrame —1im) N FH)E),

val data = List((6, "DingDing", 18, 88, "M"), O BHIRAEBR L sparkShell 2 H A
(3, "KeKe", 18, 90, "F“), SWRREREES, T EEBIATXUT
(2, "FeiFei", 16, 60, null), fURSAREMIA] df X4
(4, "JiaJdia", 24, 92, "M"),
(1, "MeiMei", 20, 95, "F")) <O EITUHAMER, K 5 PARIGE
val df = spark.createDataFrame (data) . & ﬁ@%ﬁ%ﬂ%&ﬁﬁDataFrame
toDF ("id", "name", "age", "score", "gender")

scala>

scala> val data = List((6, "DingDing", 18, 88, "M"),
| (3, "KeKe", 18, 90, "EF"),
| (2, "FeiFei", 16, 60, null),

121

Spark XEEH RSN A (Scala k) —&F Hadoop 3.3+Spark 3.5

| (4, "Jiadia", 24, 92, "M"),

| (1, "MeiMei", 20, 95, "F"))
data: List[(Int, String, Int, Int, String)] = List((6,DingDing,18,88,M), (3,KeKe,
18,90,F), (2,FeiFei,16,60,null), (4,Jiadia,24,92,M), (1,MeiMei,20,95,F))
scala> val df = spark.createDataFrame (data) .

| toDF ("id", "name", "age", "score", "gender")
df: org.apache.spark.sqgl.DataFrame = [id: int, name: string ... 3 more fields]
scala>

[%33R]

EEANGHNENFT P8I df T3 AW P, N EHIAT—BX B agR R
43 DataFrame, JF*t df & S3#47RAL,

1. DataFrame RIEIEZE A

DataFrame 845 A R4 SO0 BR ot e . R . 0. &ilsF, MXHsE
32 R, X EEHRAER B R & — BT Y DataFrame £E4E

% 3-2 DataFrame ¥ ARHBEERNET
= 4 IhEEH &
HRAETE E 451 BIFF A ZoR 1Y DataFrame B4E, 25U SQL A1 WHERE 4], 443
kAT LIE] NOT, AND, OR %
FEHR E W 25X DataFrame $EEIMATHT , 58] —NH1Y DataFrame HdE4E, 25l SQL i&

where/filter

sort/orderBy
A1) ORDER BY ¥4]
s AR B 251X DataFrame FHEHENAT/4H, HE—#HHY DataFrame $dE4E, 5 SQL iE
rou;
ErompRY AJH) GROUP BY 4]

%} DataFrame ¥4 o (O BARATHEA TR, 158 —1871) DataFrame $4li4E, 24Ul SQL /4]
"1y SELECT F41, selectExpr 3 F 34§ A5

T T E A S T DA

(1) where Fl filter ZH5 071k .

where Fll filter AR THiEfT & 500 EHETT, PERSEMAY. where()Fl filter() 7T 2
PRt — U R SE, RS EAWAIER: —FPRIEN "age>18" WFERFER) —FhRfl
i $"age">=18 XF Column XfRMFI/RIER (DL “$” FF5HLMFE4).

NI JE where BT RIS, AKZLETE SparkShell 2 F.2X g 2 BRI v A T 94 URY
(FERE: #& A SRR, DR S+ FE i T A5 v &5 i AR A T IR EL, R IRD).

select/selectExpr

val dfl = df.where ("age>=18") & i) age>=18 MYEIRAT

val df2 = df.where("age>=18 and score>90") <& A age>=18 H score>90 BYEEA T
val df3 = df.where($"age">=18) & Al age>=18 HEHEST, $"age™t
val df4 = df3.where ($"score">90) %%age FBHxX—75

dfl.show O REATI) A3 T score>90 MEHRT T
df2.show O MRS RTAF R, T LU TAF
df3.show BRG], fln: df . filter (
df4.show "sal>1000 and job=='MANAGER'")
scala>

scala> val dfl = df.where("age>=18")

122

% 3% Spark SQL B&HEALIE

dfl: org.apache.spark.sgl.Dataset[org.apache.spark.sgl.Row] = [id: int, name:
string ... 3 more fields]

scala> val df2 = df.where("age>=18 and score>90")

df2: org.apache.spark.sqgl.Dataset[org.apache.spark.sgl.Row] [id: int, name:
string ... 3 more fields]

" " > == /-‘—'Jl‘i; I
scala> val df3 = df.where($"age">=18) $'age" fUk age FRUX

df3: org.apache.spark.sgl.Dataset[org.apache.spark.sgl.Row] = [id: int, name:
string ... 3 more fields]

scala> val df4 = df3.where ($"score">90)

df4: org.apache.spark.sgl.Dataset[org.apache.spark.sgl.Row] = [id: int, name:
string ... 3 more fields]

scala> dfl.show

Fo—— Fo——t———— Fo————- +
| id] name | age|score|gender|
Fo—m e —— fom - Fo————- +
6	DingDing	18	88	M
31 KeKe	18] 90	F		
4] Jiadial 24	92 M			
1	MeiMei	20	951 F	
R e to——t————- e +

scala> df2.show
- = - +

| id| namel|agel|score|gender|

s T tom b — e +
| 4|Jiadial| 24| 92| M|
| 1|MeiMei| 20] 95| Fl
s T tom—t—— Fom————— +

scala> df3.show

R e Fo——t————- +o————- +
| id] name | age| score|gender |
R ot Fo————- +
6	DingDing	18] 88	M
3] KeKe	18] 90	F	
4	Jiadial 24	92	M
1	MeiMei	20	951 F
Fom et Fo—— - e et +

scala> df4d.show

Fo—— to——t————- +o————- +
| id] name | age|score|gender |
Fo——t———— ot Fo———— +
| 4|Jiadial| 24| 92 M|
| 1|MeiMeil| 20| 95| F|
Fo——t————— R it Fo———— +
scala>

123

Spark XEEH RSN A (Scala k) —&F Hadoop 3.3+Spark 3.5

TERXA S, dfl 2 df3 AR R IEEEE R df Hidit where #RAESRIE MR T, df4 W)
N df3 PR S B B T . whereOR filter())7 A B IE RS H S SQL iEAfY
BRI, FrMEH] SQL #E A M AT B SR 2 LB E LY

(2) sort Fil orderBy £#EHE .

DataFrame A] LA i sort()&Y, orderBy () Jy X Bt -1 T HE R, 7R X IS T ik i 75 24
FEHEPAE, B R 2B dHTHDY . BATEShRE Bt R,

T sort())y IR R FHSEB], ZEME AT sort()Fl orderBy() /i T LA BB e, ARLEAE
SparkShell 3¢ 5. UG e 8z i AR A ACED

val dfl = df.sort("age") O PR, BRIANE TR HED

val df2 = df.sort ($"age") O R, BRI HES

val df3 = df.sort("age", "score") <& ?ﬁﬁ%‘*ﬂﬁﬁﬁlﬁ?,@(ﬁ\ﬂ@ﬂ?ﬂ?ﬂ
val df4 = df.sort ($"age".desc) O AR IR T HES

val df5 = df.sort($"age".asc, $"score".desc) O AR T . 3BT 5 S HER
dfl.show

df5.show

scala>

scala> val dfl = df.sort("age")

dfl: org.apache.spark.sqgl.Dataset[org.apache.spark.sgl.Row] = [id: int, name:
string ... 3 more fields]

scala> val df2 = df.sort(s$"age")

df2: org.apache.spark.sqgl.Dataset[org.apache.spark.sgl.Row] = [id: int, name:
string ... 3 more fields]

scala> val df3 = df.sort("age", "score")

df3: org.apache.spark.sqgl.Dataset[org.apache.spark.sgl.Row] = [id: int, name:
string ... 3 more fields] $"age"S&— Column X§42, P desc())5

scala> val df4 = df.sort($"age".desc)

df4: org.apache.spark.sgl.Dataset[org.apache.spark.sgl.Row] [id: int, name:
string ... 3 more fields]

scala> val df5 = df.sort($"age".asc, $"score".desc)

Il
"
Q.

df5: org.apache.spark.sgl.Dataset[org.apache.spark.sgl.Row] int, name:
string ... 3 more fields]

scala> dfl.show

Fom e —— fom - e +
| id| name |age|score|gender |
Fo—— et ———— ot to————- +
2	FeiFeil	16	60	NULL
6	DingDing	18] 88	M	
3] KeKe	18	90	F	
1] MeiMei	20	95	F	
4	Jiadial 24	92	M	
Fo—— to——t————- to————- +

scala> df5.show

124

% 3 & Spark SQL EH&EELAE

Fom - t—— - +
| id] name|age|score|gender|
Fom e ——— fo— fo————= +

2| FeiFei| 16/ 60| NULL|

\

| 31 KeKe| 18] 90 | F|

| 6|DingDing| 18] 88| M|

| 1| MeiMei| 20| 951 F|

| 4| Jiadial 24| 92 M|
Fom et Fom - e et +
scala>

FE_ LA, d8 e) F BRI TP HES I . G e R e HEr =, WImT LA
W “S7 5 B A XN (Column XT4), JEHITFHER asc()k desc() /5, An$"score.desc()
m%$"score".desc 55,

(3) groupBy £(#E /74 .

Jii 24 8 S, groupBy H] T X} DataFrame (14 4547 4 4l 3 A AU 34 47 43 20, 3R (8] 9 2
GroupedData ST FIXT 4 o groupBy() /7 1A 2 5 R A s E—L (i, 7T LI Spark P EIIE
B REEC A SCRA BT R A R A T o

e count(): FITEHRATHIECE

e mean(). avg(): RFEBIFEIE,

e max(), min(): RFBAEKMHEFE/IME

e sum(): KB ENNH,

T B SRS T LA o 4RZETE SparkShell 52 H X Hn R FR BT i AT T AR

val dfl = df.groupBy("gender").count () | < FEVERGEIT ALK
val df2 = df.groupBy("gender") .agg(O FEHEINRE T, BB A = o
Map (& Map UER—DTFIEHEES, HHE SR
"age" -> "mean", A X ISR B
"score" -> "max"
)
)
dfl.show
df2.show
scala>

scala> val dfl = df.groupBy("gender") .count ()
dfl: org.apache.spark.sgl.DataFrame = [gender: string, count: bigint]

scala> val df2 = df.groupBy("gender") .agg(

Ma ML 2 p =
| Pl W R A T B AR 4 TR, mean
! age" -> "mean®, TR, max JHFRECKS
| "score" _> Hmaxﬂ
|)
|)
df2: org.apache.spark.sgl.DataFrame = [gender: string, avg(age): double ... 1

more field]

125

Spark XEEH RSN A (Scala k) —&F Hadoop 3.3+Spark 3.5

scala> dfl.show
- - +

|gender | count|

fommm - fo—m—- +
\ F| 2|
\ M| 2|
| NULL] 1]
fom—— fo———- +

scala> df2.show
+————— - Fom - +

|gender|avg (age) |[max (score) |

e et Fomm - Fomm e +
\ F 19.0| 95|
\ M| 21.0] 92|
| NULL| 16.0] 60 |
Fo——— Fo————— Fom— +
scala>

(4) select F1 selectExpr ZHE i),

select il selectExpr .+ T M DataFrame £(#E£E HErifjdg @ 7B, JHRI—4H
DataFrame ${#li4E . D34k, selectExpr B+ S FpRHe e F B TR, AniR4e X, P& T
A&, WL, B SRBA R,

select()Fl selectExpr() /2 S HRAS AN T

df.select ("*") .show O AR T A 7B

df.select ("name", "age") .show & ﬁlﬁ]?&fﬁ%ﬂ’] name., age B
df.selectExpr ("age*2") .show O BIHBIRER age FB, I TFBHETRL 2
df.selectExpr ("age*2 as newage") .show O BAEN age*2 FERZ B E N newage
scala>

scala> df.select ("*") .show

Fom e —— Fo— - e +

| id]| name |age|score|gender |

R ot Fo————- +

| 6|DingDing| 18] 88| M|

| 3] KeKe| 18] 90 | F|

| 2| FeiFeil| 16| 60| NULL|

| 4] Jiadial 24| 92| M|

| 1] MeiMeil| 20| 95| Fl

Fo—— R it +-————- +

scala> df.select ("name", "age") .show

tommmmTo toot select() il selectExpr() 5L TER L £~ F-BihT,

| name|age | AT B RN S ST B — S

e +-——+

|DingDing| 18]

126

% 3% Spark SQL B&HEALIE

Fom———— +
| (age * 2) |
Fomm +
\ 36|
\ 36|
\ 32|
\ 48|
\ 40|
e i +
scala> df.selectExpr ("age*2 as newage") .show
Fo———— +
|newage |
+-———- +

\ 36|

\ 36|

\ 32|

\ 48|

\ 40|
+-———— +
scala>

RIS SE AT T selectExpr() 7%, HSHUE SQL IEXMFE, MRAZIFE,
MBS F BRI selectExpr() 5 AT ERS4L, 25l dfiselect("name", "age")HIfilik . 1A,
Select() Fl selectExpr() J7 i 7] L) 454 DataFrame 4 HABERVE 7 e — &40 1], o an e HhuAT
where()J7 AT select() 7 .

val dfl = df.where("age>18").select ("name") O HeidiE age>18 BUEIEAT, TEMIERE
dfl.show () AR name FB

scala>

scala> val dfl = df.where("age>18") .select ("name")

dfl: org.apache.spark.sqgl.DataFrame = [name: string]

scala> dfl.show ()

|JiaJdial|

|[MeiMei |

127

Spark XEEH RSN A (Scala k) —&F Hadoop 3.3+Spark 3.5

Zi LJrid, DataFrame HARZHERAEITIA M IIRE S1EGLHY SQL B RIEARIY .

[FEEZ>]]

TR ML E LA F A B DataFrame $0864E

val df stu =

spark.createDataFrame (

List (
("al", "FFJ)L", 12, 56.5), ("a2", "/INT", 15, 23.0),
("83", ll/J*ﬁ", 23, 84.0), ("84", n/J\fB"i", 9, 93.5)

)

) .toDF ("user id",

df stu.show

>>> df_stu.show

R e e +
|user_id|name|age|score|
+------- e e e +
| a1|FJL| 12| 56.5]
| a2|/hT| 15| 23.0]
| a3|/\i8| 23| 84.0]|
| a4/ 9| 93.5]
Fommmmm- e et TR +

nnameu, nagen, llscorell)

(1) T age<15 BUBHETT,
(2) ¥ BT s A BdE 1 7o
(3) Rib R FPERARRS

2. DataFrame By #E4bIE

DataFrame $2fit T —

OV TRIRAE B IR, G RBRE AT MER 7B, #Rng1

EERREA TR, RISRIEETIN3R 3-3 s, A 2Ry, 260 RDD HAfiI%, DataFrame
HEEAL BRI A SR E A S RVBEE N, ITRA 879 DataFrame. A1, 1T Spark
JEAE T AT T-BO R A T B, PRI DataFrame ANRE] 5 B EAEIE S8 .

% 3-3 DataFrame & HHEIEIEE F

HTER

IhReHi

distinct

LbRsE 2RI T

dropDuplicates

MRS E 1 7 B B PR R IR AT

dropna RBRFELE B null AEHETT
drop THBRESHE 4R A St B, DR Al B
limit R I [l) 45 SRS 4R X BSHEA TK

intersect, intersectAll

HRARA T BR AN R AE 2846, %61 F SQL #41) i) INTERSECT, intersectAll
WM ER LT

union/unionAll, unionByName

IR [AR 34, K T 0 5% union/unionAll Z£[R] T SQL] UNION ALL,
FBRAT I B BT 49, unionByName TAREHRATIF B 4 491

exceptAll IR [A E R A Y 22 4
join WP BIREEERRR, A N, ZEohES: . NG . &AM T
withColumn W, SO 1 [F 451

withColumnRenamed

U 7 B

col, apply

IRIFEES, &M Column XF4, HWHH T2 5 A

128

% 3% Spark SQL B&HEALIE

THEAAFE 3-3 HE R

(1) distinct FI dropDuplicates < H

distinct()Fl dropDuplicates() Jy i # FHE MN BR 5 2 988 A T, (HPIE A — s X, T2
DataFrame [P FP AR T 25 F AUHRAESL A

val dfl = spark.createDataFrame(List (O HiiE—> DataFrame
<& some [AFAfH, None AETLIH
("Alice",5,Some (80)), ("Alice", 5, Some (80)), (5 null A%FH)
("Alice", 9, Some (80)), ("Tom",12,None)) O distinct BFHTERTEEE
) .toDF ("name", "age", "height") BEBAEAT, S DataFrame
dfl.show <& dropDuplicates B FH T
dfl.distinct.show [name Ml height FEAHRIAYFT

dfl.dropDuplicates ("name", "height") .show
scala> . .
scala> val dfl = spark.createDataFrame (List (?ﬁi;;§%§§;$sé?ffifiﬁfi

| ("Alice",5,Some (80)), ("Alice",5,Some (80)), FEI(H a ’

| ("Alice", 9, Some (80)), ("Tom",12,None))

|) .toDF ("name", "age", "height")
dfl: org.apache.spark.sgl.DataFrame = [name: string, age: int ... 1 more field]
scala> dfl.show
F-——— Fo—— +

name | age | height |

R e +

|[Alice| 5| 80 |

|Alice| 5| 80|

|[Alice| 9] 80 |

| Tom| 12| NULL|

R e +

scala> dfl.distinct.show EREEEEMIT, 2] —AH DataFrame
R - +

| name|age|height|

Fo————= fom +
|Alice| 5| 80 |
|[Alice| 9| 80|
| Tom| 12| NULL]
+————= o ——— +

scala> dfl.dropDuplicates ("name", "height") .show

+-——— it +) L
2B name I height X P~ BoAH R 1977
| name|age|height|

+——— Fo——t——— +
|Alice| 5] 80 |

| Tom| 12| NULL|

+——— ot +
scala>

129

Spark XEEH RSN A (Scala k) —&F Hadoop 3.3+Spark 3.5

FEXA LB, P8R distinet()F1 dropDuplicates() 55 2= BRE & EHETT, A& 2R A
T AT BRI A 2 R0, J5E TR € T BoE R A LB

(2) dropna F1 drop $%5 B .

W2 DataFrame FAFTEANTEREMEHETT, HLANSLOr e F BefE, BUR it mT Lhid i
dropna() J7 RIS IEX AV EHEAT, BUERIETEE 9" JRAF B, X2 ETL st TR
Hs UL — B . (B4R, TOIRIE/EREAERE, IR DataFrame #f A2 & AR
o AREET I LIE dfl EE AR RS, SEElan T,

dfl.na.drop.show O MIBRAL S null EEHETT, 4B DataFrame

df1l.drop ("height") .show O B height FB GEMFTAHIEE)

dfl.drop ("age", "height") .show O Bifg age Ml height FB (WAL)
scala>

scala> dfl.na.drop.show
+-——— Fo——t +

| name|age|height|

Fm——— Fo——t——— +
Alice	5] 80	
Alice	5] 80	
[Alice	9	80
+-——— R +

scala> dfl.drop ("height") .show
+——— +-——+
| name|age|
F-——— +-——+
[Alice	5
Alice	5
Alice	9
Tom	12]
+-——— +-——+

scala> dfl.drop ("age","height") .show

|[Alice]
|Alice]
|[Alice]|

| Tom|

scala>

BEA, MFFAE T BESR R R T nT LU QT ks SR BLl, iXHLA H—
B ias o

val df2 = dfl.na.fill(50) /] ZEFEATEN 50
val df2 = dfl.na.fill (false) /) ZRFEBAEIE N false

130

% 3 & Spark SQL EH&EELAE

val df2 = dfl.na.fill(
Map ("age"->50, "name"->"unknown")) // il Map BEMNEE FERIETTE
(3) limit FRE B T4
limit() /772 KPR E DataFrame BIEREA T, VMBI TG 22003, fBiln .

val df2 = dfl.limit(2) <& PR DataFrame MEHRITEL, AEMHTH DataFrame
df2.count <& PREUCYAT DataFrame WA TS

df2.show

scala>

scala> val df2 = dfl.limit(2)
df2: org.apache.spark.sgl.Dataset[org.apache.spark.sgl.Row] = [name: string,
age: int ... 1 more field]

scala> df2.count

res0: Long = 2 X HLUZ Y1 DataFrame Y4081 74X
scala> df2.show

+-———- Fom +

| name|agelheight|

F-——— Fo—— +
|[Alice| 5| 80 |
|[Alice| 5] 80 |
e R +
scala>

Horr, limit() 5 321% Bl —N 8) DataFrame, 38 i X B 200820 T 5 2240 BB = .
limit()5 show() /7 i AR Y, show() % AT i/t £ i BdiE N 25, I AN DataFrame
(S BR B TEL

(4) withColumn i withColumnRenamed %41 ZbFH

withColumn() /7 7 IR 7E 4Tl DataFrame J&4ili 15—, sc8esifa iy # %1, Ifik
—ANH) DataFrame . Q1RTEHIE SIS 2B M= B E, WIAT RIXEE R4 7 (8 B i is S sl i
B R G B . withColumnRenamed() /7 2 W H TAEMOIA SN F B 44, FIEHRIREAAE
ARSI T a2 Bl AR AR, Ll

import org.apache.spark.sqgl.functions.{col,upper,lit}

val df3 = df2.withColumnRenamed ("age", "newage") & ﬁ%ﬂﬁ?ﬁ%éﬁageﬁynewage

df3.show O HEMBMIEH DataFrame
G

val df4 = df2.withColumn ("newname", upper (col ("name"))) | < FHH—3%| newname, NEHN

val df5 = df2.withColumn ("name", upper (col ("name"))) i name FNEHE I KE T4

val df6 = df2.withColumn ("addr", lit("Hangzhou")) & B name 5, NZHE name

df4.show GBI RS F Rk

df5.show O HiHy addr 51, WA AT HIE

df6.show Hangzhou

df2.show O FRHREA df2, IFEHARBUE T

131

Spark XEEH RSN A (Scala k) —&F Hadoop 3.3+Spark 3.5

O H—ATHY import IHMHAZFA col () upper (), lit () XJLREL, WAl FmEpIER:

import org.apache.spark.sql.functions.
XEEE T LIEH org. apache. spark.sql. functions WAL ERE T
O Spark M3 A SIRAFAALEE, AT T S AR e R iE)
import spark.implicits.
SRJE AT LM S "name "R AU col ("name") X FhF B RILTE K
scala>
scala> import org.apache.spark.sqgl.functions.{col,upper,lit}

import org.apache.spark.sqgl.functions.{col, upper, 1lit}

scala> val df3 = df2.withColumnRenamed ("age", "newage")

df3: org.apache.spark.sgl.DataFrame = [name: string, newage: int 1 more
field]

scala> df3.show

e Fo———- Fo————- +

| name|newage|height|

F-——— e it e +

|Alice] 5] 80 |

|Alice] 5] 80 |

e Fo———— Fo———— +

scala> val df4 = df2.withColumn ("newname", upper (col ("name")))

df4: org.apache.spark.sgl.DataFrame = [name: string, age: int ... 2 more fields]
scala> val df5 = df2.withColumn ("name", upper (col ("name")))

df5: org.apache.spark.sgl.DataFrame = [name: string, age: int ... 1 more field]
scala> val dfé6 = df2.withColumn ("addr", lit ("Hangzhou"))

df6: org.apache.spark.sqgl.DataFrame = [name: string, age: int ... 2 more fields]

scala> df4.show

R fo—— +o————— +

| name|agelheight|newname |
+-——— R R +
|Alice| 5] 80| ALICE|
|Alice| 5] 80| ALICE]
+-——— Fo——t———— R +
scala> df5.show

F-——— Fo— +

| name|age|height|

+-——— Fo—— +

|ALICE| 5| 80 |

|ALICE| 5] 80|

+-——— Fo—— +

scala> df6.show

e Fo—— Fo————— +
| name|age|height| addr |
F-——— Fo—— Fomm————— +

|Alice| 5| 80| Hangzhou|

132

% 3 & Spark SQL EH&EELAE

|[Alice| 5| 80| Hangzhou|
e Fo—— to—— +
scala>

scala> df2.show

e Fo—— +

| name|age|height|

+-——— R +
|Alice| 5] 80|
|Alice| 5| 80 |
+-——— Fo——t———— +
scala>

RS HE] T col(). 1it() . upper(pR%L, EAT AR LI FH4E DataFrame 7B, HH,
col() BRI TAREL— 3 Al 3% [B] Column XF4, 1it()sRASH T4 AR N FEL, upper()p
B TR B o REFHRIER, A HAL— LU0 R BB AR 2 7 org.apache.spark.sql.
functions fiLHE LAY

(5) intersectAll 32 £Efl unionByName FH4E

intersectAll() /775 T RIS DataFrame BY3CHE, 15931 12 N & 3 B 7 HES 1) 4H [H)
BAe1T, MR EFBRANEMAE B4, HAET REAAEEZH 1T, unionByName() /7%
THRUPA~ DataFrame IF4E, HRIFER A EIRT TR T BAGIFR—RMids®. LEft
i,

val dfl = spark.createDataFrame (O QI pataFrame, FEIFH cO cl c2

List((1, 2, 3), (4, 5, 6))
).tODF("CO", "Cl", "CZH)

val df2 = spark.createDataFrame (<& fil# pataFrame, FEMFHN c1 c2 <0 (i
List((4, 5, 6)) FeA2E4E)
) .toDF ("cl1", "c2", "cO0")
dfl.intersectAll (df2) .show O SR Af1 M df2 WS (FRFBOliFR 24)
dfl.unionByName (df2) .show O SRaf1 M df2 BIFE (R5BAsRIFE)
scala>
scala> val dfl = spark.createDataFrame (

| List((1, 2, 3), (4, 5, 6))

|) .toDF ("c0", "cl", "c2")
dfl: org.apache.spark.sgl.DataFrame = [cO: int, cl: int ... 1 more field]
scala> val df2 = spark.createDataFrame (

| List((4, 5, 6))

|) .toDF ("cl1", "c2", "c0")
df2: org.apache.spark.sgl.DataFrame = [cl: int, c2: int ... 1 more field]
scala> dfl.intersectAll (df2) .show
Fo——t -
| c0] cl| c2]

T B R34

133

Spark XEEH RSN A (Scala k) —&F Hadoop 3.3+Spark 3.5

Fo— e ———+
scala> dfl.unionByName (df2) .show

BRI

| c0] cl] c2]
Fo——t———t———+
[1 21 31
I 41 51 6]
I 61 41 5]

scala>

ZE LR, intersectAll()Fl unionByName() /7 iE#B & R THE A2, HrE R iEds
AT F BN RA R S R FEFEA), JEE MR BA Tk &I

(6) join FEFEALEE

join FFHT#EH P~ DataFrame FEHRTT, WENEE: . Z20MNER:, GHMNEH: . 24hiE
#5507, BOAKRIINIERR DT, TR0 join(J7 kIS, W LME— DB A F BTk,
TR R L N I R

val dfl = spark.createDataFrame (& MEPIS DataFrame
List(("a", 1), ("b",2), ("c",3))
) .toDF ("name", "numl")
val df2 = spark.createDataFrame (
List(("a", 1), ("b", 4))
) .toDF ("name", "num2")
val df3 = dfl.join(df2, "name") O i name FEIT df1 Fl df2 BN IR
df3.show ()

scala>
A~ =z Bt non M RN A1
scala> val dfl = spark.createDataFrame (dfl A TFEA " bRl
| LiSt(("a", l),(|lb|l,2),(|lc|l,3))

|) .toDF ("name", "numl")

dfl: org.apache.spark.sgl.DataFrame = [name: string, numl: int]
scala> val df2 = spark.createDataFrame (A B 5457 {2 b
| List(("a", 1), ("b", 4))
|) .toDF ("name", "num2")
df2: org.apache.spark.sgl.DataFrame = [name: string, num2: int]
scala> val df3 = dfl.join(df2, "name") 4 name FEIFA TN
df3: org.apache.spark.sgl.DataFrame = [name: string, numl: int ... 1 more field]

scala> df3.show ()
Fom b ————

|name | numl | num?2 |

b ————+
I al 1] 1]
| Dbl 2 4
bt ————+
scala>

134

% 3 & Spark SQL EH&EELAE

Mizt145 %5 & i, DataFrame BN i%4% 5 RDD MY & IR ERCR & —30m) .
[BEE%S])
THEE—MIE LA F 4[5 B W) DataFrame, FEBO R & 95 | b4 | AR 256050

val df stu = spark.createDataFrame(List (
("al", "#FHJL", 12, 56.5), ("a2", "/NT", 15, 23.0),
("a3", "/MEr, 23, 84.0), ("ad", "/JME", 9, 93.5))
) .toDF ("user id", "name", "age", "score")

df stu.show ()

(1) fE df_stu (Al RS —51, (ENRERE B BUEm —F

R R S Frmmmm— - +
|user_id|name|age|score|score_new|
Fe=m=m--- L Shats SRS e +
| a1|5)L| 12| 56.5| 28.25]
a2	/hZT	15	23.0	11.5
a3	/N\i8	23	84.0	42.0
a4	/N\M&	9	93.5] 46.75	
R L EEEE: St R LSRR R +

(2) BREBIRITBO AT
Hommmeo R R R +
|user_id|name|age|score|score_new|
+o------ R e et +
| a1|5%JL| 12| 56.5] 28.25]

| a2 /T | 15| 23.0] 11.5]
R B s R +

(3) MBRIEA Y score 1,

e e bt T +
|user_1id|name|age|score_new|
Foemme-- e R +
| a1l 12| 28.25]
| az|/NT | 15| 11.5]
| a3|/h\iE| 23| 42.0|
| a4|/M&| 9] 46.75|
Femmmm - R e +

(4) F5Bt4 user id BN id,

B e e +
id|name|age|score_new|
B e e +

a1|FJ)L| 12| 28.25]

|

| az|/NT | 15] 11.5]
| a3|/hiE| 23| 42.0|
| aa|/NME| 9| 46.75|
R s +

(5) ¥ score_new “FE{EIE N 10,

L R s bt LT +
| id|name|age|score_new|
R s Skt LT +
| a1|FEJL] 12]

| a2]/\T| 15| 21.5]
| a3]/h\iE| 23| 52.0|
| aa|/M&| 9] 56.75]
L R s bt LT +

3.3.4 DataFrame RI##EIRIE (SQL)
Spark SQL B 1304+ DSL B EHRRAE APL Jri%k, 0 r] LM& Hive JIRHE BT SQL

135

Spark XEEH RSN A (Scala k) —&F Hadoop 3.3+Spark 3.5

THA), 3X°h Spark 7ESEBRAVEE /BT TAETPEHE THCORBIMER] . Spark SQL Y SQL #R4F&id
it spark.sql() 7SR, B LA SQL FAFHAE N SAL, ik 91— DataFrame. A, Spark SQL
JEASZHF SQL 3555 . UPDATE Z845:4E, Jf HAEHUT SQL #AEZ Hii N4 DataFrame {4
—iRImI ISR (TempView, A TR RME), Wl “IREEdRR", Hnig
Vi, DataFrame 1] DLSVE—SkBHEFRM R . B ERRF P IEA spark.sql() /74047 SQL #
fE, R EIS5HRK—A ¥ DataFrame.

[FIREH, AT oA PR BRI e 2 L IS, 32 r (5 B EYick.
JrERE I, 3K AL EE 73 AT sql_customers.csv 1 sql_shopping.csv SCHHT, BTN E
e 3-4 5k 3-5 Fim.

£34 ERAEE (customers)

user_id name age gender phone city
(ERPHS) (&) (F#5) (1510) (FBiE) (3)
1 [SN 22 5 138%*+%5678 Hangzhou
2 T 18 'y 139%**%432] Shanghai
3 EVISE 19 L 138%**%3344 Guangzhou
4 Pt gt 18 7 136***%7788 Hangzhou
5 JLTR T 20 i 135%*%%543) Hangzhou
% 3-5 M¥igR (shopping)
sale_id user_id sale_date product_name price location
(iT8%HS) (BERPHS) (SHEEH) (F=mafR) (&) (&)
1001 1 2023-10-26 BHeFHL 5000 sl
1002 2 2023-10-26 ot it %€ 1200 st
1003 3 2023-10-27 iz 400 TN
1004 4 2023-10-27 F 2o 1500 R
1005 1 2023-10-28 A L ik 8000]l
1006 1 2023-10-28 EAEAL 300]l
1007 3 2023-10-29 Tk 200 e
1008 4 2023-10-29 JLEIHE 400 LAl
1009 5 2023-10-30 FIE M 2000 T8

1. DataFrame #RERBI0IZE

1Eif it SQL #4F DataFrame Z i, WZ5EH 241 DataFrame (M — sk IG B HL K A4 fE
ffif], DataFrame GBS HLEIZR X0 R IEIR" f1 “2RER" Mg, w2y
HITfY SparkSession 2315, J&5 & AIAE 4T Spark N FHFEF AU FTAT SparkSession SE]H1ij5[7]
TR A R R, WL R AR M —1> “global_temp.” HiZH, XJ2H A4 Rl
JE BB E R global temp X ARG A EEE LAY, Aid, TieEM—MEEER, eI EMRH
SEERIGHER S F BMER , XSy IR AR

fE sql_customers.csv Fl sql_shopping.csv iX I8 X E 48 AL £ A 3 H 5 /home/
spark/™ . 7F SparkShell 22 H. AR FEFREE rh AT 1 B4 U A B A0l N 45

136

% 3% Spark SQL B&HEALIE

scala>

la> 1l dfl = k. d. . N ..
scasas va Bl ekt Wit CSV BdlE CFAI#E DataFrame,

' option(*header®, true). WS —ATE M, LA Sl B

| option ("inferSchema", true).

| csv("file:///home/spark/sql customers.csv")
dfl: org.apache.spark.sqgl.DataFrame = [user id: int, name: string ... 4 more
fields]
scala> val df2 = spark.read.

| option ("header", true).

| option ("inferSchema", true).

| csv("file:///home/spark/sql_ shopping.csv")
df2: org.apache.spark.sql.DataFrame = [sale id: int, user id: int ... 4 more
scala> dfl.createOrReplaceTempView ("customers")

. . S B P BK JR L T 2
scala> df2.createOrReplaceTempView ("shopping")

scala> spark.sql ("select * from customers").show i# T SQL BRI A if) R
R e o Fom - e e e + S ik Ve
|luser id| name|age|gender | phone | cityl

Fo————— Fo———— Fo— - Fomm e Fomm +

\ 1] KM 22 % | 138****5678| Hangzhou|

| 21 EI¥F 18] 4| 139****4321| Shanghai|

\ 31 EAX 19] %1 138****3344|Guangzhou|

\ 4| BRlEkE) 18 4| 136***%7788| Hangzhou|

\ 5| JUEEEE| 20| 4| 135****5432| Hangzhou|

Fo————— e Fo—— b ———— fom e Fomm +

scala> spark.sqgl ("select * from shopping").show
o Fom— Fom— - o F-———- fom— +

|sale id|user id| sale date|product name|price|location]

Fo——— Fo——— Fom Fo————— +-——— R it +
\ 1001 112023/10/26]| HHETAHLI 5000 eIl
| 1002 212023/10/26]| i ESE | 1200] iR
| 1003 312023/10/27] Bk 400 T |
| 1004 | 412023/10/27| A Zcfe | 1500 g
\ 1005] 112023/10/28 ZEIEAHLG | 8000 | eS|
| 1006 112023/10/28] EAFHHL 300 I |
| 1007 | 312023/10/29] B 200 LM |
\ 1008 412023/10/29]| JLEBCE | 400 FoM |
| 1009 512023/10/30 FEHM | 2000 ToH |
Fo————— Fo————— Fom Fomm - R e +
scala>

[BE=%3])
FRE T 1 B E A 15— DataFrame, 4 H MR student MEIER, IR H A A9 EdE 1 2
i SQL A A i) K

137

Spark XEEH RSN A (Scala k) —&F Hadoop 3.3+Spark 3.5

+-=---==-- #---F---t----- +
|user_id|name|age|score|
F=m===- R T L +
I a1|FJL| 12| 56.5]
| a2|/NT | 15| 23.9|
| a3|/\iE| 23| s4.0]
| aq|/NfE| 9| 93.5]
+------- Rt e e +

2. DataFrame flEF&H SQL &if

i1 SQL #rif] DataFrame F9%(HE 75 A& B spark.sql() 7, XA J7 i3 Bl —A> 5)
DataFrame. 7FH % TVEH, i] SQL & A ER 2 —FP Rk 1 7720 . Spark SQL SZ8L T
SQL EAJENTI T, It REHME T SQL 15A)stEE 7L 43 FIH Spark 58 KA 43 =i 1.2
AE, X ARRFEME T Spark 47 REE AL 5 43 Hr v T4k .

T T i HAR B SEA K)R DataFrame [SQL A i34 1k, Hidr, dfl #1 df2 74
A B HE SO sql_customers.csv Fl sql_shopping.csv BIZE Y DataFrame, [#IL&IF
customers Fl shopping W55 M H dft F1 df2 X[4, R EX S, X B R SQL i)Y
K FHRE A IEAFR (SQL FLhr LA X RER/ANE R),

val dfl = spark.read. C>iEiisql_customers.csv
option ("header", true). 1 sql shopping.csv H#fi
option ("inferSchema", true). SABNEEHS DataFrame, 3
csv("file:///home/spark/sql customers.csv") | RIS —ITYI AR, FEL

val df2 = spark.read. AT iR RS0 H SR

option ("header", true).

option("inferSchema", true).

csv("file:///home/spark/sql shopping.csv") & BIEETE soL 1E AT Y
dfl.createOrReplaceTempView ("customers") customers*ﬂshopping%ﬁ
df2.createOrReplaceTempView ("shopping™) EES

[#3]R7R]

HAEE: AAFTARK S, woRB BT SparkShell X Z X A2IRILH BRI, WL
REHPAT E @K IUATRAD, FRERTIER dfl = df2 %, AR LE SQL &4 P12 A
customers #= shopping ALE %, FNiZf74TF ke AL HIALE,

(1) SQL AL,

SQL H:A#rifjfuf% SELECT. SELECTDISTINCT, WHERE. ORDER BY %5, %%
A SQL 1B, WIRE S E X A5 2 R AR R SQL B EAE—HEI,

@© AR E N TBIE

val df = spark.sql(& M customers MEFHF A name
"SELECT name, city FROM customers") ity FB

df.show & #%30N SELECT .. FROM ..

scala>

scala> val df = spark.sql ("SELECT name,city FROM customers")
df: org.apache.spark.sgl.DataFrame = [name: string, city: string]
scala> df.show

Fom—— fommmm - +

% 3% Spark SQL B&HEALIE

#KH	Hangzhou
F3%	Shanghai
F/NX	Guangzhou
BB	Hangzhou
YEANEN	Hangzhou
fo———— o +

scala>

XA customers PRI A1) name A1 city P FBE, iR [Bl—/S#1# DataFrame,
Frf A2 i W ok

Q@ M ER NFBH.

BRI TR S EE T BIE, ARG EIIHAF R FBAE, WA L
DISTINCT K55, VAR [PIME—i) 57 BUA sl BUEA G o A b BrA A RS A 24 55

spark.sql (O M customers PEFE A
"SELECT DISTINCT city FROM customers").show ANEAY city {H, distinct &
oI
scala>

scala> spark.sqgl ("SELECT DISTINCT city FROM customers").show

| Guangzhou |
| Hangzhou|

| Shanghai |

scala>

@ HRAA
FITB TR, TR EEBUIRLL 48 & SR T . H A AT i 2m it WHERE 4]
SCER, Sk RIATT LIS AND, OR. NOT A, HLan#Eifl user id 1 B 5.,

spark.sql ("SELECT * FROM customers WHERE user id=1").show < M customers
&M user id=1

% 5 S
scala>
scala> spark.sql ("SELECT * FROM customers WHERE user id=1") .show
Fo——— Fo——— -t o o + o
|luser id| name|age|gender| phone | city]
Fo————— Fo———— Fo— - Fomm e e +
| 1] 5kKH| 22| B | 138****5678|Hangzhou|
Fo———— +-———— Fo——t————— Fo— R it +
scala>

139

Spark XEEH RSN A (Scala k) —&F Hadoop 3.3+Spark 3.5

@ AL AT
XA R AR, AR A B A el 2 Bib Y, W 244 ORDER BY SCHE
ORDER BY BRIANZTHFHRS , AN L HES , W n] 7EHR 7B IS il DESC Se8 5 (3R
N ASC THFPHESN). e, EfrAE P EER, Ik age FEBITFHIRI,
spark.sql ("SELECT * FROM customers ORDER BY age").show O order by BN

e HEE

scala>

scala> spark.sqgl ("SELECT * FROM customers ORDER BY age").show

f-—— +-——- -t f—————— f————— +
|luser id| namel|age|gender | phone | cityl
Fo————— Fo———— F———t————— Fmm fmm————— +
\ 21 EFF| 18] 4| 139***%4321| Shanghai|
| 4| BEEE 18] 4| 136***%7788| Hangzhou|
\ 31 F/NX) 19 B 138***%3344|Guangzhou|
\ 51 JERHNN | 20] 4r| 135***%5432| Hangzhou|
| 11 5KKRM 22 B | 138****5678| Hangzhou|
Fm————— Fm———— F=——t————— Fmm——————— Fmm—————— +
scala>

[FEEZ>]]

i} “1. DataFrame fRIEZRAIBIE" /Y “BEAZR)” MY student HIEIFAGIE SQL 15
H), SCEEA N IIRE.

© EMFAEA NS

@ EfFEREN 12 PR,

@ EMIEORT 60 XAy, THE BN BRI .

(2) SQL mighArifi,

¥1%} DataFrame 45 2% 25 A] i} SELECT...LIMIT. SELECT...LIKE %, FHE#ELf
TSI 5] R e AT A

O s e mIc .

SELECT...LIMIT 7] D FR e A iR P14 745, O R i B A A ke i LA o
FL AN i1 customers FLEI R FR RTINS 5 B

spark.sql ("SELECT * FROM customers LIMIT 2").show O limit B PR
scala>

scala> spark.sqgl ("SELECT * FROM customers LIMIT 2").show

Fo——— F-——— -t o R et +

|[user id| name|age|gender| phone | cityl

Fo———— e ot Fomm - e +

| 1] kK 22 B | 138****5678|Hangzhou|

\ 21 EJF| 18] 4| 139****4321|Shanghai |

Fo———— +o————- ot fom e et +

DX A SQL HEAIE AT LUINAAS Rk 261, s R 2ORHT . WatRil, BUE 2R 1l

140

% 3 & Spark SQL EH&EELAE

IATEL, HFE SQL B YA RN L LIMIT S&4 S BR e BB RN AT, HoAth 47y nT #%— 8% SQL
AL .

scala>
scala> spark.sqgl (
| nnn SELECT * FROM customers
| WHERE age < 20
| ORDER BY city DESC LIMIT 2""").show

+-——— +————— +———t Fom Fom— +
|[user id| name|age|gender| phone | cityl
Fo———— e ot Fomm - e +
\ 21 EFFI 18] 4| 139***%4321|Shanghai |
\ 4| RIS 18 4| 136****7788|Hangzhoul|
Fo———— +o————- ot fom e et +

@ HERIA
BRI AR B AT FE AL AR, TARRHIILAC, SQL A AY LIKE SCH
T TR WHERE “FBINAS . LA G 545 “LL 138 JFK” MIFrA & {5 R

spark.sql (""" SELECT * FROM customers O like BN AL
WHERE phone LIKE '138%' """) show @ < SfURFEFH

scala>

scala> spark.sqgl (""" SELECT * FROM customers SQU ity R (EF 51 55Tk
| WHERE phone LIKE '138%' """).show

Fo————— Fo————- ot Fomm - Fom +

|luser id| namel|age|gender | phone | cityl

Fo——— e Fo——t———— Fom R +

\ 11 5K 22 $H| 138****5678| Hangzhou|

\ 31 F/ 19 % | 138****3344|Guangzhoul|

Fo———— +-———— Fo——t————— Fo— Fom———— +

scala>

[#3327
SQL i EHATHEMEERE, 8505 (%) REOREESZAFH, TEL () REE
MEEFH,

@ IN I BETWEEN #rif],

SQL 4 IN Xt S #57F WHERE T P HUE £ME, BETWEEN e H Tk len T
PIAMEZ B TEE . flin, R —% SQL T4 city FBHEDY “Hangzhou” Hi
“Shanghai” A % P EE. 5524 SQL B T4 age FEHAEA T 18 ~ 20 Z AT A
HERER.

spark.sgl ("""SELECT * FROM customers WHERE & between..and
city IN ('Hangzhou', 'Shanghai') """).show BN fEe-ZE”
spark.sql ("""SELECT * FROM customers WHERE
age BETWEEN 18 AND 20 """).show

141

Spark XEEH RSN A (Scala k) —&F Hadoop 3.3+Spark 3.5

scala>
scala> spark.sql (
| """ SELECT * FROM customers

| WHERE city 1IN ('Hangzhou', 'Shanghai') """).show
Fo———— Fo————- ot Fomm - e +
|luser id| namel|age|gender | phone | cityl
Fo——— e Fo——t———— Fom R it +
| 1] KK 22 H | 138***x5678|Hangzhou|
| 21 EFFI 18] 4| 139***%4321|Shanghai |
\ 4| [FRIEwE) 18] 4| 136****7788|Hangzhoul|
\ 51 JERHNN | 20] 4| 135****5432|Hangzhou|
Fo————— e Fo—— b ———— fom e Fomm - +

scala> spark.sql (
| """ SELECT * FROM customers

[WHERE age BETWEEN 18 AND 20 """).show
Fo———— e Fo——t———— Fo— Fo————— +
|luser id| name|age|gender | phone | cityl
+-——— +———— R atatate Fom Fom————— +
| 21 FEIFI 18] 4 1139*%**%4321| Shanghai |
\ 31 E/AL 19] H1138***%3344| Guangzhou|
| 4| BEEE 18] 4 1136****7788| Hangzhou|
\ 5| JLANAE| 20| 4 |135****5432| Hangzhou|
Fo———— e to——t——— Fom - e +

scala>

[BEE%S]]

fli[] “1. DataFrame #LEIRMAIA" 19 “BE%25>]" hiENHY student HLEI A SQL
hy, SEHEITUIRE.

@ BRI A2 A5 B

@ A LL N FIPRM SRR R, R B = B HET o

@ EMIEAPAEE N FREAE R

@ AT 12 ~20 ZRII2EAEE R

(3) SQL i&E#4rify,

SQL LA JOIN Sy, i i Bofok H sk el misk L Ba R i Baty
455K . HirP, INNERJOIN SEfe i IS 2, T sk EdER PRI e 12 mlr 5%
FEELIITELICsE, B4, 45 LEFTJOIN, RIGHTJOIN, FULL OUTERJOIN 453445)5,
Bhn, A SR i dh B B H

spark.sql ("""SELECT a.name, b.product name, b.sale date < INNER JOIN AW

FROM customers a INNER JOIN shopping b | #i%

ON a.user_id = b.user_id """) .show

scala>

scala> spark.sql (""" SELECT a.name, b.product name, b.sale date

142

% 3% Spark SQL B&HEALIE

| FROM customers a INNER JOIN shopping b
| ON a.user id = b.user id """) .show
R fom e fom +

INNER JOIN #2468 @ #eA T A F B 1% 2
| name|product name| sale date|

+o———— Fomm fom +
| KRR BHETFHL 2023/10/26]
| EJF fklkfiERE | 2023/10/26]
| F/N3C BB 2023/10/27|
| Bl | Bl 2023/10/27]
| KRR DA | 2023/10/28]
| KRR WEFHEAL| 2023/10/28]
| E/hX FEE | 2023/10/29]
| RiEE | JLEFLE | 2023/10/29]
| ST | FIGHE 2023/10/30]
Fo———— Fom e Fomm e +
scala>

AR E] T SQL B AL LLREIfE SQL A KA TE L, HiH customers 15144 8% 1%
47 a, shopping FIRIZ BN be BLAN, FRATIATT LIARIET 2 & F B4, FBONA S
IAEAI S R

[BEE%S]]

HT “1. DataFrame MLEIRMEIE" 1Y “FE2EZ2]7 I MY student PEEIZR Y —ikiR
PR course ¢, #4iE SQL iE4]), LA T IIRE, X e ms e R A 147,

tommm--- LR RS PR R + t---t----- to----- t----+
|user_id|name|age|score]| | id|spark]|hadoop]|javal|
F---mm-- R e et + +---t----- F---mo- +----+
a1	%FJL	12	s56.5]	a3	80	78] 90	
az	/hT	15	23.0		a1] 30	66	70
a3	/\HB	23] 84.0]	az] 60] 70	60			
aa	/I V	9] 93.5]	as] 76	98	80		
Fo--o--- e e + e +------ +----+

@ fiiFf] INNER JOIN 2 if i 2= A5 1 IR FE 4

@ f#iFH] LEFT JOIN £ if i 5 ¢ A= iR AR a4

3 i} RIGHT JOIN 2t ifi i =7 A (1 IR RE a4t

@ f{#i] FULL OUTER JOIN £ fF A 2 2E IR AR .55

(4) SQL &4/ F4rif],

X T AR 55, (A AT D E L T LASED)8, an SR] A 2 4 B E%
FIRERLTS 2L 2 UG EA R BN, M (price F2B) #1000 JOH 7= 20
SE P S o

spark.sql ("""SELECT * FROM customers WHERE user_ id 1IN O ERIETA
(SELECT user id FROM shopping WHERE price>1000)""" A SQL i&AhHE
) .show %‘%ﬁﬁi}’ﬂgpﬂfé
scala>

143

Spark XEEH RSN A (Scala k) —&F Hadoop 3.3+Spark 3.5

scala> spark.sql ("""SELECT * FROM customers WHERE user id IN
| (SELECT user id FROM shopping WHERE price>1000)""").show
o +—————= Fom—t—————— fom - o + -)
|luser id| name|age|gender| phone | cityl E‘“x?;?iﬁ?ﬂﬁﬁ, /f?ﬁiﬁifgﬁllﬁﬁ
- #*, X5k A —A> user_id FBt
Fo—————= e Fo——p—————— fomm - Fom— - +
\ 11 5KRM 22 5| 138****5678|Hangzhou|
| 21 EIFI 18] 4| 139****4321|Shanghai |
\ 4| WRIEEE) 18] | 136****7788|Hangzhou]
\ 51 JERREN | 20| 4| 135****5432|Hangzhou|
Fo————— f—————- fom = fom - fom—————- +
scala>

XHL) “(SELECT user id FROM shopping WHERE price>1000)" 52| i) 2&{CH —
AFBYIRI R, SRS] IN SCHE o HF ey — A 250, A3 iR r 4 2R

[FEE 45T]

fifiH “(3) SQL #E#eArif)” /) “Bli%4:>]" Y student F AN course FAiE SQL 4],
£rif Spark Fl Hadoop MRFR ST 70 732205 B .

(5) SQL &4,

SRARBAEEZEAML, Spark SQL WHL 1 H HIRY R G eRECHRE, 4 count)IH4L. avg()
KFIM . maxQR BRI . min(OKE/MESE ., Hilln, 5k shopping P price FB: T
SS(E

spark.sql (& avg () BT
"SELECT avg(price) AS average price FROM shopping" SREHE

) .show
scala>

scala> spark.sql ("SELECT avg(price) AS average price FROM shopping") .show

ettt B L +
[2111.1111111111113
o +
scala>

[BEE%S])

i “(3) SQL #E#AM” 1) “BEEZ>]" HAY student A1 course FHiEE SQL 4],
£rif) Spark URFE N GURE T IZ IR -0 22 5 R .

(6) SQL Zr#Hgtil4rify,

ST ST R BAR AL b 2 B B E . 7E Spark SQL tf, JrEHGETHE T OCHE
% GROUP BY RSLHLW, HGHE R EAE KA R — &M, #lan, Fiit customers #1
EIER TP & AR IR By B

spark.sqgl (""" SELECT age, count(age) AS nums & group by E N “HE---
FROM customers GROUP BY age """).show @ Zr4l”

144

% 3 & Spark SQL EH&EELAE

scala>
scala> spark.sqgl (""" SELECT age, count(age) AS nums FROM customers
| GROUP BY age """).show = .
nums G AR T BB
Fo——t———t

|age |nums |

Fo——t———+
| 22| 1]
| 20| 1]
| 19] 1]
| 18] 2
Fo——t-——
scala>

[BEE%S]]

4t1t shopping LI H &R A ST HL - XM 5 1B

(7) HIP EE SCeREL

Spark SQL [N'& [org.apache.spark.sql.functions #&k o4, 5 £ Fhm B #2206 B B9 20 A B ek
B, WAEREG R, bR ERESE, DISZREX DataFrame M1 7ol 8 B ET TAR A AR PE . 3% 3-6
51t T org.apache.spark.sql.functions FER H [R5 FH PN B RN

% 3-6 org.apache.spark.sql.functions #RFFHIE S E H R E mE

KE ERARNERL
FATH R lower(). upper(). substr(). concat(). startsWith(). regexp_replace(). regexp_extract()
B R AL abs(). ceil(). floor(). log(). round(). sqrt()
ST Nl avg(). max(), min(). mean(). count(). stddev()
H 1 R % datediff(), date add(). from utc timestamp()
i PR AR md5(). shal(). sha2()
& H REL over(). rank(). dense_rank(). row_number(). percent rank(). lead(). lag(). ntile()

HIR Spark SQL #2t TARZ N eRECHE I P, (BAESEPR TARE TP AA A Rl N B
PRBCCIE MY, BB] N RS IR B BB, A A R 2Eid P A Rk
SERCE A i e . P A L% (User Defined Function, UDF), f&fgi#iid Spark 3%
FRA AR 5 8 L sREUL 845 Spark SQL, fATEARMZ N E R abs(). lower()3F K%L —
Feo FEHP A kg, nTUAR & HmfRin 5 Pt n & ekl . Jrik . B RS SE i
TR, MM Spark SQL 4 PR

B 7P E K%, Spark SQL ISR A UG L (User Defined Aggregate
Functions, UDAF) F1H 7 H x& LAY R4 M K% (User Defined Table Generating Function,
UDTF), Hrfr, UDF #H4 TaEA R AL, $84E 17X SQL FE 4 tifg, & “—1rfA—
11" ; UDAF R G R, N Spark SQL $24E T X FEHW R A TIRE, 25) max(). min().,
count)ZEpR%N, J& “ZiThi A—1THiH”; UDTFACEREA MR, & “—fHMmAZtHmL”,

T B AN UDF S5, HABPIF B R E A SR 20 5 2

145

Spark XEEH RSN A (Scala k) —&F Hadoop 3.3+Spark 3.5

/7 ARSI R, A4 String JRREI—DHTY String & HEX A convert ()

def convert(s: String): String = { REL, BEMERESR I RE
return "#" + s.toUpperCase + "#" FHEHBIGES A “#7 F
} S
// PP B E SCRRECESETE Spark sOL g ikA e fd H] O M A E SCREL (
spark.udf.register ("myconvert", convert()) HEGIRE, X EHH T
// T sQL TR I A L eREL <& ALMEMEH] spark SQL A
spark.sqgl (E%¥§T‘¢¥ﬁﬁﬁmyconvert0
"SELECT name,myconvert (city) FROM customers").show EE%&
scala>
N -
scala> def convert(s: String): String = { FIE S~ convert(PR
| return "#" + s.toUpperCase + "#"
I} 7 Spark SQL HYE M P A ek
convert: (s: String)String

scala> spark.udf.register ("myconvert", convert())

resl0: org.apache.spark.sqgl.expressions.UserDefinedFunction = SparkUserDefined
Function ($Lambda$5000/460845124Q@4070d628, StringType, List (Some (class[value[0]:
string])),Some (class[value[0]: string]), Some (myconvert), true, true)

scala> spark.sqgl ("SELECT name, myconvert (city) FROM customers") .show

A e + 76 SQL A T P [52 R

| name|myconvert (city) |

fo—— o +
| KRR #HANGZHOU# |
| EJ #SHANGHAT# |
| F/NC #GUANGZHOU# |
| BRI | #HANGZHOU# |
| JEREEE | #HANGZHOU# |
fom— o +
scala>

MIstiaE A B, city FBUNNADARMEF B RS TR B4 2 T
— WA

Spark SQL YT P A 5 SCBRECAMUAT AREFIAE SQL A, 11 H. 35 DSL By AP A .
R DSL B P SR A S

val convudf = O EMA P BE R, R E

spark.udf.register ("myconvert", convert()) ' —/AFFHEXEBNS
dfl.select ($"name", convudf ($"city")) .show O P convudf PERECTS
scala>

scala> val convudf = spark.udf.register ("myconvert", convert())
convudf: org.apache.spark.sqgl.expressions.UserDefinedFunction = SparkUserDefin
edFunction ($Lambda$5021/382878114@770f48fd, StringType, List (Some (class[value]

0]: string])),Some(class[value[0]: string]), Some (myconvert), true, true)

146

% 3% Spark SQL B&HIEALE

scala> dfl.select ($"name", convudf ($"city")) .show

T T ¢ #E DSL e (HEH convudf SIS, BXOER
| name|myconvert (city) | BEMf F"myconvert", KT HE—MFHHLT
T oo +

| 5KRHT | #HANGZHOU# |

= #SHANGHAT# |

| E/hX #GUANGZHOU# |

| Bl | #HANGZHOU# |

| SR | #HANGZHOU# |

T oo +

scala>

[&%)

iR “1. DataFrame fLEIZERAVAIE" #) “FE " FF M) student MEER, HE XL —
e, S score HBIERN 5 9], BIMIRT 60 23 A Kk, 60 ~ 69 43R Jekk, 70 ~
79 53 RThAE, 80 ~89 43 A RAF, 90 4rUU L RIEFE . filhn:

=== B i ST TR + P [P, .
|user_id|name|age|score| |user_id|name | age | new_ Scorel
Fmmm - . + Feemee== e T

a1|FJL| 12| 56.5| a1|FE)L| 12| 7ﬁ&*§|

a3|/\iE| 23] 84.0] a3|/\g| 23 R
a4]/M&| 9] 93.5] a4|rN&| 9| W‘sl

7R S48 withColumn()7 % /&£ DataFrame P #7138 — /> new score F 5 (B £ A A F
FE), REGR LR ZORGEE—NA P 8 Z &3, FI “4% score FHIXE new_score
%?"iﬁ” B R,

| I
| a2]/h\T| 15] 23.0] \ az|/NT| 15] EN2E]
| I
| \

3.4 Spark SQL ##E 438 L5

341 ANOEESiT4)

oA —HEE 600 J7 A 5 BB A7 7 24107 3 H 521 people_info.csv XA U,
TR — D AN ARG S, HA) 3 DB Eg S . M (F/M, 3 BI04l
B, B (AN em), SBFEAREIRNZEIT

spark@ubuntu:~$ head people_info.csv spark@ubuntu:~$ tail people_info.csv
1,F,180 5999991, F,155
2,M,146 5999992 ,M,140
3,F,198 5999993 ,M,137
4,F,196 5999994 ,F,181
5,M,197 5999995,M,205
6,F,202 5999996 ,M,150
7,M,184 5999997 ,F,192
8,M,153 5999998 ,M,164
9,M,218 5999999 ,M,206
10,M,214 6000000, F, 203

147

Spark XEEH RSN A (Scala k) —&F Hadoop 3.3+Spark 3.5

PR AdFH Spark SQL 5E M LA T HHE T T 55 o

(1) gatBHS e 170em LU S & 165em B8 AL

(2) MR g B L N

(3) Bt 5@ KT 210em [T 50 2 BE, I14% 8 A EURHET .

(4) Gt BYEREY B

(5) ot S mmEKE.

HRPEIEER , AR R — N8R, & —LEE S0 fRrbnE CSV A& SeAc
S, BT, DL B 5 i - Be 45 45 B (id. gender Fl height) Jf-4 4%
2 7%, DataFrame, 45dEE&CERIG, BU0T LA XA 0T TS5 05 SQL), HAR R —uk
FA SQL A ity fge i HEAE

& SparkShell 38 H UM FEI S H i AT TGRS

FE S BLAE R
scala>

scala> val pepschema = "id LONG, gender STRING, height INT"
pepschema: String = id LONG, gender STRING, height INT
scala> val df = spark.read.

| schema (pepschema) .

| csv("file:///home/spark/people info.csv")

df: org.apache.spark.sqgl.DataFrame = [id: bigint, gender: string ... 1 more
field]

scala> df.createOrReplaceTempView ("people info") #4 DataFrame {0 IR LRI
scala>

RS E S people_info.csv SCPFANZEGHER 4445 /8 DataFrame Xf42, #1413k
600 JT RBUR A, SRR HTEMA people_info #IAIZ

TR IR 1 AR, AR BEOR AT A, X FEEHIF] SQL 1Y count()St i1 b
%, BT,

scala>

scala> spark.sql (
| ""n SELECT count(id) FROM people info
| WHERE (height>170 and gender='M")

| OR (height>165 and gender='F') """).show
T " Sei 3 B B 1700m BB LM B 5
|count (id) | 165cm HY S AKL, T2 WHERE [1y#4
TR + FAMRHE ORGZHE, T/ AND
| 3091252]
Fom— - +
scala>

5 2 AN RESE PR R — A GRS, AT LASGiE i GROUP BY S8 7 #0457 BeittA 10
H, RIS F BV count(), avg(). max()FFR AR, X MG HIIRET IR
(CY/

148

% 3 & Spark SQL EH&EELAE

M P G R Lo A%

scala>

scala> spark.sql (""" SELECT gender, count(gender) FROM people info
| GROUP BY gender """).show

F-———— Fomm +

|gender | count (gender) |

e et Fomm - +
\ F| 2999577
\ M| 3000423
Fo———— Fomm e +
scala>

4 3 MABRSGEH AT 210em 9RT S0 4 THE, kB M SUIRHE . R
{fi}] ORDER BY I LIMIT J¢Ht%, SiU A% T

scala>

B =R T 210cm By 5P

scala> spark.sql(B EICHEIE . 3T S0 4

| """ SELECT * FROM people info
| WHERE height>210 AND gender='M'
| ORDER BY height DESC
| LIMIT 50 """).show
fom fo— fom— +

\ id|lgender|height|

- +————— - +
13191220 M| 219
\ 2031 | M| 219
3193350 | M| 219
\ 6784 | M| 219
scala>
5 4 DTIURGETT B PE PR BTG, FEAEH aveORRKL, SEBURTSUIT .

scala>

GErHE LT B

scala> spark.sql (
| "SELECT avg(height) FROM people info WHERE gender='M' ") .show

o +
| avg (height) |
fom e +
[169.48521191845282 |
B +
scala>
5 ARG S B EROR(E, X B LB o, SEBUAAS TR o
scala>
scala> spark.sql(Yot S R
| "SELECT max (height) FROM people info WHERE gender='F' ") .show

149

Spark XEEH RSN A (Scala k) —&F Hadoop 3.3+Spark 3.5

Fomm e +
\ 219
Fom - +
scala>

2, ANPGRS IAGITAESS A2 oe il T o AU A A FUBSERY, ME N 322
T U B] UERORE IE AR Y SQL TR I A, 38 7E 5 ~T g] LA RS 2 AR G DR AR
(1 SQL A, LAIMIRRS L3 U iy BEAE o

342 HMHETHHIESTL

MovieLens & — T HFEZIEFTBIANTTEIGEE , BI1AAS T KER IMDB (Internet Movie
DataBase, HHEMHLZEMHRZE) MG R, TS PNEHEE RS . Mlasse 2 Hkm)
LA LR - MovieLens £ 1 movies.csv Fil ratings.csv X4 HIAERL THEG R . B
P8R, RS IE T (58 1 ATHGEPREAT).

spark@ubuntu:~/ml-25m$ head movies.cswv spark@ubuntu:~/m1-25m$ head ratings.csv
movield,title,genres userId,movield,rating,timestamp
1,Toy Story (1995),Adventure|Animation|Children|Com |1,296,5.0,1147880044

2,Jumanji (1995),Adventure|Children|Fantasy 1,306,3.5,1147868817

3,Grumpier 0ld Men (1995),Comedy|Romance 1,307,5.0,1147868828

4,Wailting to Exhale (1995),Comedy|Drama|Romance 1,665,5.0,1147878820

5,Father of the Bride Part II (1995),Comedy 1,899,3.5,1147868510

6,Heat (1995),Action|Crime|Thriller 1,1888,4.0,1147868495

7,5abrina (1995),Comedy|Romance 1,1175,3.5,1147868826

8,Tom and Huck (1995),Adventure|Children 1,1217,3.5,1147878326

9,Sudden Death (1995),Action 1,1237,5.0,1147868839

B X AN SO T /home/spark/m1-25m H 5% (A0SR %A % H 5%, WIN e mkdir /7441
i, RIS CSV X HAE R), Hrdr, movies.csv SUAHIR/IN R 2.9MB,
5 6 T2 RIE R, Btk [movield,title,genres], RI[HL5 ID,HLRZ A4 PR, AL 2E0];
ratings.csv SCHA AL & HLSZ I P PR EE , R/NE R 647TMB, i 4% 2 K [userld,movield,
rating,timestamp], BRI/ ID,HL# 1D, H P P4 BRI . X B P PRS- R 5 B Bk
WUR ARSI (0.5 ~5), HANH HEextml—&B s oo —uk, B RENE B 1970 4F 1
A 1 H 0SB P45t 2t i =2 R4k

PR AS Spark SQL 58 LA T B85 73 i T 55 -

(1) AR 10 BUHRR

(2) AR BT 5000 K, HAFPE5-HER AT 10 B9 H 52 S HO B 349 9E43

N T FRRAX AN, FRATTSEXT e T AT R M. 5 1 DRSS PR R B 1Y G
TG, HIE eBgH il B h s AP CRR AR R R 00, SR JE XLk T
JEHES, ARECHT 10 FFHE . 55 2 AN RIBE S A& — IR 5000 ik, —
PR HEAA AL TR 10,

51 ARG SEEL, AT DK R 2D A X . 7E SparkShell 58 B AR T
AT AR

150

% 3 & Spark SQL EH&EELAE

scala>

scala> val dfl = spark.read. 435\ movies.csv Fll ratings.csv U H EEBUSE , header i
| option ("header", true). FRAT, inferSchema JH T E H ZhHERT 7 B Al
| option ("inferSchema", true).
| csv("file:///home/spark/ml-25m/movies.csv")

dfl: org.apache.spark.sgl.DataFrame = [movieId: int, title: string

scala> val df2 = spark.read.

| option ("header", true).

| option ("inferSchema", true).

| csv("file:///home/spark/ml-25m/ratings.csv")
df2: org.apache.spark.sqgl.DataFrame = [userId: int, movieId: int ... 2 more
fields] S35/ DataFrame VM i o %
scala> dfl.createOrReplaceTempView ("movies")

scala> df2.createOrReplaceTempView ("ratings")
scala> & movield “FEEHEA T4, THA MR T H
P ent, R H PR BRI —IR

[""" SELECT movieId, count (userId) AS cnt FROM ratings

| GROUP BY movield HeVEAr P8 ot EFTRETFES, AT 10 WL
| ORDER BY cnt DESC LIMIT 10 """)

scala> val df maxl0 = spark.sql (

df max10: org.apache.spark.sqgl.DataFrame = [movieId: int, cnt: bigint]
scala> df maxl0.createOrReplaceTempView ("max10 ratings")
scala> AU B O R A e
scala>

TR 15, Stk movield FBOWEBUHESAT M, AR 0T P BT R,
SRIGXTVEST P BGHA T I HED I S BUET 10 FRHL5Y S50 Ja b 20t R 1 BEE S Tl i — ik

max10_ratings I[5 A L& 3
4% max10_ratings F1 movies X PRI, Z0iA) X

scala> 10 FRHLBSHUPEANE B, FEHTON P B R R 51
scala> val df movie = spark.sql (

| """ SELECT a.movield, a.title, a.genres, b.cnt

| FROM movies a, maxl0 ratings b

| WHERE a.movielId = b.movieId

| ORDER BY cnt DESC """)
df movie: org.apache.spark.sqgl.DataFrame = [movieId: int, title: string

scala> df movie.show

[Stage 4:=================== > (2 +2) / 6]
Fo————— o - R et T e e +

|movieId| title]| genres | cnt |

L Tttt Tt A * CRTHER)

| 356] Forrest Gump (1994) |Comedy|Drama|Roma...| 81491] O o o RO)
| 318 |Shawshank Redempt...| Crime|Drama| 81482]

| 296] Pulp Fiction (1994) |Comedy|Crime|Dram...| 79672]

| 593|Silence of the La...|Crime|Horror|Thri...| 74127]

151

Spark XEEH RSN A (Scala k) —&F Hadoop 3.3+Spark 3.5

\ 2571| Matrix, The (1999) |Action|Sci-Fi|Thr...| 72674|

| 260|Star Wars: Episod...|Action|Adventurel|...| 68717]

| 480 | Jurassic Park (1993) |Action|Adventure|...| 64144]

\ 527|Schindler's List ...| Drama |War| 60411]| CFESHR 4 5
| 110 Braveheart (1995) | Action|Drama|War| 59184]|

| 2959 Fight Club (1999) |Action|Crime|Dram...| 58773 (oL
Fo———— Fom Fom +-——— +

scala>

= |

T4 1 A HRAYRET 10 FBAL HA A movield, HILIATFRITX A movield M
movies BRI B TENE B o FrLASE 2 e, e e P 2 Sk g R O

BRI O
Tk, TATKRLLEMAPIRETE, BRI R S A Nk, SR AT
[P
scala> EHRENTAERP, @il movield
scala> val df movie = spark.sql (6?§£§{]$?F£*HFH&’ IFiEAT
men SELéET a.movieId, a.title, a.genres, b.cnt FEFEHEPIIRELH 10 Hml, 13
’ t r r MERZ R SER b
FROM movies a,
(SELECT movieId, count (userId) AS cnt FROM ratings

ORDER BY cnt DESC LIMIT 10) AS Db

WHERE a.movieId = R a FIFE b, FRHGRT 10 S MREgE R, Hip,
a J& movies FHIIN , b B EA A A IR R

|

|

|

| GROUP BY movieId
|

| b.movieId
|

ORDER BY cnt DESC """)

df movie: org.apache.spark.sqgl.DataFrame = [movieId: int, title: string
scala> df movie.show

[Stage 9 ===> (2 +2) / 6]
Fo————— o - R et T e e +

|movieId| title]| genres | cnt |

Fo———— o - R e e T +-——— +

| 356] Forrest Gump (1994) |Comedy|Drama|Roma...| 81491]

| 318 |Shawshank Redempt...| Crime|Drama| 81482]

| 296] Pulp Fiction (1994) |Comedy|Crime|Dram...| 79672]

| 593|Silence of the La...|Crime|Horror|Thri...| 74127]

\ 2571| Matrix, The (1999) |Action|Sci-Fi|Thr...| 72674|

| 260 |Star Wars: Episod...|Action|Adventure|...| 68717]|

| 480 | Jurassic Park (1993) |Action|Adventure|...| 64144

| 527|Schindler's List ...| Drama |War| 60411]|

| 110 Braveheart (1995) | Action|Drama|War| 59184]|

| 2959 Fight Club (1999) |Action|Crime|Dram...| 58773

Fo———— Fom Fom +-——— +

scala>

XA IREARRIEAN, R T AR E GRS A, AR R g
#709b, RIS (a Mlb) YIS, IMAFEIRT 10 MREERZITRAE R, Aiimasy

152

% 3 & Spark SQL EH&EELAE

B3 A A B 0 e A A TR

He PR 2 AN, HFAES | AN 3Eat FRIMBOREE , Eoesim—A “PEa kgL
KT 5000 K7 B9, BIFESERPESY, IR TREIFHESIAREGHT 10 17, RJETEREG RE
FEml 3 HAVING FAJAEEE “PEAMREOR T 5000 Y7 A 4kSerE SparkShell 58 1.3 4
RIRSITHA T HEE. RS F A, 35 movield
scala> SRR IS P o 5000

AR, TR (T

FErHEg, FRECET 10 S, 4
""v SELECT a.movield, a.title, a.genres, b.avgr BB M b

scala> val df2 movie = spark.sql(

|
| FROM movies a,

| (SELECT movieId, count (userId) AS cnt, avg(rating) AS avgr
| FROM ratings

| GROUP BY movieId SFRgE A E I PR W RS E
| HAVING cnt > 5000

| ORDER BY avgr DESC LIMIT 10) AS b

|

|

WHERE a.movielId = b.movield AR a FIFR b, PIET 10 FEEZWHAMER, i
ORDER BY avgr DESC """) a J& movies KIYH4, b AR MU In AT
df2 movie: org.apache.spark.sqgl.DataFrame = [movieId: int, title: string ...

scala> df2 movie.show

[Stage 14: > (4 +2) / 6]
Fo————— o - R et T e o - +

ImovieId] title]| genres | avgr |

Fo———— o - R e e T Fomm + Oy
\ 318|Shawshank Redempt... | Crime|Drama| 4.413576004516335]| AR)
| 858 |Godfather, The (1...] Crime|Drama| 4.324336165187245|

\ 50|Usual Suspects, T...|Crime|Mystery|Thr...| 4.284353213163313| (#H&)

| 1221 |Godfather: Part I...| Crime|Drama|4.2617585117585115]

| 2019 |Seven Samurai (Sh...|Action|Adventure]|...| 4.25476920775043 .

| 527|Schindler's List ...| Drama|War| 4.247579083279535] i}gﬁ%
| 1203| 12 Angry Men (1957) | Drama| 4.243014062405697|

| 904 | Rear Window (1954) | Mystery|Thriller| 4.237947624243627|

| 2959 Fight Club (1999) |Action|Crime|Dram...| 4.228310618821568]|

| 1193 |0One Flew Over the...| Drama| 4.2186616007543405]|

Fo———— Fom Fom Fom +

scala>

ZEI, AR M R E el e B . A LA h T LA
Spark SQL A& b BT A Hh— Al # B2 A DI AR R 5K 4 5 5 15 1Y SQL 14 o

3.5 DataFrame ¢ #{R1F
5 RDD Z5M8l, Spark SQL #it T ZFAS R a2k Bl A4 AF DataFrame, 7 3.3.1 73

153

Spark XEEH RSN A (Scala k) —&F Hadoop 3.3+Spark 3.5

i, AT RN A EES . CSV XFE R RIE DataFrame A9 /77, ARG anfaid@ i
JSON . Parquet SC{4-G1% DataFrame, IAb, S4EFF AT DataFrame i, Spark SQL
FHREHATAES] CSV., JSON K Parquet 25 4% 2 AU EE SCF

3.5.1 fIJ& DataFrame

1. @it JSON 32 146)# DataFrame
B CHER— 25 1) JSON SCF, ARG FE B AL A D5 B8 . 7E Linux &

spark@ubuntu-vm:~$

spark@ubuntu-vm:~$ cd ~ Y aT = B, RO, WARKZE
spark@ubuntu-vm:~$ cat > people info.json

{"id":1, "gender":"F", "height":180} B EHE A people_info.json
{"id":2, "gender":"M", "height":146} A

{"id":3, "gender":"F", "height":198}
MASEERG ,, FERX R Cul+D Pt

spark@ubuntu-vm:~$

D)3 SparkShell 52 H A FEFRSE, F AT HIAIIU

scala>
scala> val dfl = spark.read.json (FE 1 M json() Ak EHEINEL JISON 34
| "file:///home/spark/people info.json")
dfl: org.apache.spark.sgl.DataFrame = [gender: string, height: bigint ...
scala> val df2 = spark.read.format ("json") .load(
| "file:///home/spark/people info.json")
df2: org.apache.spark.sqgl.DataFrame = [gender: string,\height: bigint ... 1

scala> dfl.show

F 2: B format() i
Fommm LA Fooot SE NN SCAEER 8K 5
|gender |height| id| load()J7 i in#k JSON 34
+-———- Fo————- +-——+
\ F 180 1]
\ M| 146| 2|
\ Fl 198 3
e e et +-——+
scala> df2.show
Fo——— Fo————- +-——+
|gender|height| id]|
Fm————- Fe———— +===t
F| 180| 1|
| M| 146| 2|
\ F 198 3]
+-————- +-————- +-——+

scala>

154

% 3 & Spark SQL EH&EELAE

XG2S T AN ISON ST I, Hirp, json() 75 X HY/& JSON &=Ly S,
load() 7 i W& —A38 H B N SCHEAR i 7, BTLARRZdi /] format() 7 14U SCF2E A,
HIHF CSV. JSON, Parquet %54 UWLHYEE SCIFA(X, HFTE format() /5 ¥E 45 5 HURIEA
"csv""json""parquet" SFRCHE [FATF H A FRRIA]

2. i@t Parquet X4 flI# DataFrame

Parquet s Hadoop AE A58 1) — P 890 X AE ks =0, R W R8T HEAE SR (4
Hadoop. Spark %), 5-FHMgfEiE S5I0C, EWAERER@EHEERT, REMHGES
SEHFZEEERR T LM E . Parquet HAG/& Spark SQL BRINMIAAAEAS L, Aid BRI,
Parquet SCAFANRE LA cat 3 vi ZFEM SR THAR, HINSHERMAGLISIE, HAH
Spark fnZk 2 HERT LUG A et BLIE # R N2

Spark AL AL T —A Parquet FEEGIEMHE, HIUE 7F examples/src/main/resources H
S, I EE AR A ST N QAT inzR. Parquet SCHF, X BUBGE Spark AL EE
/ust/local/spark H g, MR H %, A EB U0 — TS0y B RO E . 7F SparkShell
A H A AP TP AT T AR

scala>

scala> val df = spark.read.load/(Jii# users.parquet UK HFE 4 DataFrame
| "file:///usr/local/spark/examples/src/main/resources/users.parquet")

df: org.apache.spark.sqgl.DataFrame = [name: string, favorite color: string ...

scala> df.show

e et Fom e o +

| name|favorite color|favorite numbers|

+o———— o Fomm e +
|Alyssal NULL| [3, 9, 15, 20]|
\ Ben | red| (11
+o———— o Fomm +
scala>

HIE AT L, Spark SQL 7ENNZERIAE LAY Parquet SCHFRY H 0 load() 7 RIR], TG
1 format() 5 15 B SO AY

3.5.2 {x7F DataFrame

DataFrame [/%08 7] LIARHE 77 220/ 4751 CSV., JSON. Parquet A& SCfFH, Spark B
DR Parquet Hst . 7614 DataFrame HOSCAR GRS HEE . TRAT BLIF & FIET, 1
R PRAE CSV SRR S 145

£ SparkShell 38 B X4 FR 85 P AT T AR

scala>

scala> val data = List(RREAE , A 3 4%id %A DataFrame
| (11, "LingLing", 19, "Hangzhou"),
[(22, "MeiMei", 22, "Shanghai"),
| (33, "Sansan", 23, "Nanjing"))

155

Spark XEEH RSN A (Scala k) —&F Hadoop 3.3+Spark 3.5

data: List[(Int, String, Int, String)] = List((11,LingLing,19,Hangzhou),
(22,MeiMei, 22, Shanghai), (33,Sansan,23,Nanjing))
scala> val df = spark.createDataFrame (data) .
| toDF ("id", "name", "age", "address") PRATH Parquet HURY SO
df: org.apache.spark.sqgl.DataFrame = [id: int, name: string <.. 2 more fields]

scala> df.write.parquet ("file:///home/spark/stu parquet/")

scala> df.write.option ("header", true). Sy BFTBIR AT N CSV 2Ll
| csv("file:///home/spark/stu _csvl/") {1, RSB FRBAT . 1547 DataFrame
scala> df.write.option ("header", true). A 75 B8 G AT B S AR T AS S 30
| format ("csv") . P44, IO R Y H SRR P AE

T 7 S L T
| save ("file:///home/spark/stu_csv2/") WL 5eA SR

scala> df.write.json("file:///home/spark/stu_json/") 47 TSON s 2t Sk

scala>

HEEBCCHEZERL, Spark SQL $24E T[S X -7 7%, 4 parquet() . csv(). json()
S, T DM@ IR save(O T s AT ORAE , R ds s RAFIISCPRZEBIRITT , 24 F AL Eh
r5ese)s , AT K I HFEPAAE 4 2L stu LB H 5%, 7 Linux i AR rp gk AT & —
ME, RIATEEH AR NEIR NS (T A ETE SparkShell 58 B ASFEAE T).

spark@ubuntu-vm:~$

spark@ubuntu-vm:~$ 11 -d stu* PR ST F e, ST L st I
drwxr-xr-x 2 spark spark 4096 2 H 28 18:47 stu csvl/ FHER, AREGILARE
drwxr-xr-x 2 spark spark 4096 2 H 28 18:47 stu_csv2/
drwxr-xr-x 2 spark spark 4096 2 H 28 18:47 stu_json/
drwxr-xr-x 2 spark spark 4096 2 H 28 18:47 stu parquet/
spark@ubuntu-vm:~$ cd stu csvl HEA stu_csvl HEIES LA SCLE
spark@ubuntu-vm:~/stu _csvl$ 1s
part-00000-73518b52-208a-4b79-ac7a-72860af19c89-c000.csv SUCCESS
part-00001-73518b52-208a-4b79-ac7a-72860af19c89-c000.csv

spark@ubuntu-vm:~/stu_csvl$ cat part-* B L part-FF 3K ISR 2

11,LingLing, 19, Hangzhou SHAWIA CPU . DataFrame X 3#i 4~

id,name, age, address 3K, BT LA R BN SO 2
22,MeiMei, 22, Shanghai

33,Sansan,23,Nanjing

spark@ubuntu-vm:~/stu_csvl$

3.6 RDD/DataFrame/Dataset ZHI 5+

Spark [) RDD, DataFrame, Dataset ixX JLFIOCHERYEIRZEH), 2531 X BE AL Bl F 5
AR, R DB BT T 2o, XA B e i — 2P xS Spark N
BB AR B BRA

156

