华信教育资源网
半导体器件导论(英文版)
丛   书   名: 国外电子与通信教材系列
作   译   者:Donald A. Neamen(唐纳德 • A. 尼曼) 出 版 日 期:2023-03-01
出   版   社:电子工业出版社 维   护   人:马岚 
书   代   号:G0448970 I S B N:9787121448973

图书简介:

本书适合作为集成电路、微电子、电子科学与技术等专业高年级本科生和研究生学习半导体器件物理的双语教学教材,内容涵盖了量子力学、固体物理、半导体物理和半导体器件的全部内容。全书在介绍学习器件物理所必需的基础理论之后,重点讨论了pn结、金属–半导体接触、MOS场效应晶体管和双极型晶体管的工作原理和基本特性。最后论述了结型场效应晶体管、晶闸管、MEMS和半导体光电器件的相关内容。本书提供了丰富的习题和自测题,并给出了大量的分析或设计实例,有助于读者对基本理论和概念的理解。
您的专属联系人更多
关注 评论(0) 分享
配套资源 图书内容 样章/电子教材 图书评价
  • 配 套 资 源

    本书资源

    本书暂无资源

    会员上传本书资源

  • 图 书 内 容

    内容简介

    本书适合作为集成电路、微电子、电子科学与技术等专业高年级本科生和研究生学习半导体器件物理的双语教学教材,内容涵盖了量子力学、固体物理、半导体物理和半导体器件的全部内容。全书在介绍学习器件物理所必需的基础理论之后,重点讨论了pn结、金属–半导体接触、MOS场效应晶体管和双极型晶体管的工作原理和基本特性。最后论述了结型场效应晶体管、晶闸管、MEMS和半导体光电器件的相关内容。本书提供了丰富的习题和自测题,并给出了大量的分析或设计实例,有助于读者对基本理论和概念的理解。

    图书详情

    ISBN:9787121448973
    开 本:16(185*260)
    页 数:692
    字 数:1439

    本书目录

    CHAPTER 1  The Crystal Structure of Solids  固体的晶体结构
    1.0  PREVIEW  概览
    1.1  SEMICONDUCTOR MATERIALS  半导体材料
    1.2  TYPES OF SOLIDS  固体类型
    1.3  SPACE LATTICES  空间点阵
    1.3.1  Primitive and Unit Cell  原胞与晶胞
    1.3.2  Basic Crystal Structures  基本晶体结构
    1.3.3  Crystal Planes and Miller Indices  晶面和米勒指数
    1.3.4  The Diamond Structure  金刚石结构
    1.4  ATOMIC BONDING  原子价键
    1.5  IMPERFECTIONS AND IMPURITIES IN SOLIDS  固体中的缺陷和杂质
    1.5.1  Imperfections in Solids  固体缺陷
    1.5.2  Impurities in Solids  固体中的杂质
    Σ1.6  GROWTH OF SEMICONDUCTOR MATERIALS  半导体材料生长
    1.6.1  Growth from a Melt  熔体生长
    1.6.2  Epitaxial Growth  外延生长
    Σ1.7  DEVICE FABRICATION TECHNIQUES: OXIDATION  器件制备技术:氧化
    1.8  SUMMARY  小结
    PROBLEMS  习题
    CHAPTER 2  Theory of Solids  固体理论
    2.0  PREVIEW  概览
    2.1  PRINCIPLES OF QUANTUM MECHANICS  量子力学的基本原理
    2.1.1  Energy Quanta  能量子
    2.1.2  Wave-Particle Duality Principle  波粒二象性
    2.2  ENERGY QUANTIZATION AND PROBABILITY CONCEPTS  能量量子化和概率
    2.2.1  Physical Meaning of the Wave Function  波函数的物理意义
    2.2.2  The One-Electron Atom  单电子原子
    2.2.3  Periodic Table  元素周期表
    2.3  ENERGY-BAND THEORY  能带理论
    2.3.1  Formation of Energy Bands  能带的形成
    2.3.2  The Energy Band and the Bond Model  能带与价键模型
    2.3.3  Charge Carriers—Electrons and Holes  载流子——电子和空穴
    2.3.4  Effective Mass  有效质量
    2.3.5  Metals, Insulators, and Semiconductors  金属、 绝缘体和半导体
    2.3.6  The k-Space Diagram  k 空间能带图
    2.4  DENSITY OF STATES FUNCTION  态密度函数
    2.5  STATISTICAL MECHANICS  统计力学
    2.5.1  Statistical Laws  统计规律
    2.5.2  The Fermi-Dirac Distribution Function and the Fermi Energy  费米-狄拉克分布和费米能级
    2.5.3  Maxwell-Boltzmann Approximation  麦克斯韦-玻尔兹曼近似
    2.6  SUMMARY  小结
    PROBLEMS  习题
    CHAPTER 3  The Semiconductor in Equilibrium  平衡半导体
    3.0  PREVIEW  概览
    3.1  CHARGE CARRIERS IN SEMICONDUCTORS  半导体中的载流子
    3.1.1  Equilibrium Distribution of Electrons and Holes  电子和空穴的平衡分布
    3.1.2  The n0 and p0 Equations  平衡电子和空穴浓度方程
    3.1.3  The Intrinsic Carrier Concentration  本征载流子浓度
    3.1.4  The Intrinsic Fermi-Level Position  本征费米能级的位置
    3.2  DOPANT ATOMS AND ENERGY LEVELS  掺杂原子与能级
    3.2.1  Qualitative Description  定性描述
    3.2.2  Ionization Energy  电离能
    3.2.3  Group III-V Semiconductors  III-V族半导体
    3.3  CARRIER DISTRIBUTIONS IN THE EXTRINSIC SEMICONDUCTOR  非本征半导体的载流子分布
    3.3.1  Equilibrium Distribution of Electrons and Holes  电子和空穴的平衡分布
    3.3.2  The n0 p0 Product  n0 p0 积
    Σ3.3.3  The Fermi-Dirac Integral  费米-狄拉克积分
    3.3.4  Degenerate and Nondegenerate Semiconductors  简并与非简并半导体
    3.4  STATISTICS OF DONORS AND ACCEPTORS  施主和受主的统计分布
    3.4.1  Probability Function  概率分布函数
    Σ3.4.2  Complete Ionization and Freeze-Out  完全电离与冻析
    3.5  CARRIER CONCENTRATIONS—EFFECTS OF DOPING  载流子浓度——掺杂的影响
    3.5.1  Compensated Semiconductors  补偿半导体
    3.5.2  Equilibrium Electron and Hole Concentrations  平衡电子和空穴浓度
    3.6  POSITION OF FERMI ENERGY LEVEL—EFFECTS OF DOPING AND TEMPERATURE  费米能级的位置——掺杂和温度的影响
    3.6.1  Mathematical Derivation  数学推导
    3.6.2  Variation of EF with Doping Concentration and Temperature  EF 随掺杂浓度和温度的变化
    3.6.3  Relevance of the Fermi Energy  费米能级的关联性
    Σ3.7  DEVICE FABRICATION TECHNOLOGY: DIFFUSION AND ION IMPLANTATION  器件制备技术:扩散和离子注入
    3.7.1  Impurity Atom Diffusion  杂质原子扩散
    3.7.2  Impurity Atom Ion Implantation  离子注入
    3.8  SUMMARY  小结
    PROBLEMS  习题
    CHAPTER 4  Carrier Transport and Excess Carrier Phenomena  载流子输运和过剩载流子现象
    4.0  PREVIEW  概览
    4.1  CARRIER DRIFT  载流子的漂移运动
    4.1.1  Drift Current Density  漂移电流密度
    4.1.2  Mobility Effects  迁移率
    4.1.3  Semiconductor Conductivity and Resistivity  半导体的电导率和电阻率
    4.1.4  Velocity Saturation  速度饱和
    4.2  CARRIER DIFFUSION  载流子的扩散运动
    4.2.1  Diffusion Current Density  扩散电流密度
    4.2.2  Total Current Density  总电流密度
    4.3  GRADED IMPURITY DISTRIBUTION  渐变杂质分布
    4.3.1  Induced Electric Field  感应电场
    4.3.2  The Einstein Relation  爱因斯坦关系
    4.4  CARRIER GENERATION AND RECOMBINATION  载流子的产生与复合
    4.4.1  The Semiconductor in Equilibrium  平衡半导体
    4.4.2  Excess Carrier Generation and Recombination  过剩载流子的产生与复合
    4.4.3  Generation-Recombination Processes  产生-复合过程
    Σ4.5  THE HALL EFFECT  霍尔效应
    4.6  SUMMARY  小结
    PROBLEMS  习题
    CHAPTER 5  The pn Junction and Metal-Semiconductor Contact  pn结和金属-半导体接触
    5.0  PREVIEW  概览
    5.1  BASIC STRUCTURE OF THE PN JUNCTION  PN结的基本结构
    5.2  THE PN JUNCTION—ZERO APPLIED BIAS  零偏PN结
    5.2.1  Built-In Potential Barrier  内建电势
    5.2.2  Electric Field  电场
    5.2.3  Space Charge Width  空间电荷区宽度
    5.3  THE PN JUNCTION—REVERSE APPLIED BIAS  反偏PN结
    5.3.1  Space Charge Width and Electric Field  空间电荷区宽度与电场
    5.3.2  Junction Capacitance  势垒电容
    5.3.3  One-Sided Junctions  单边突变结
    5.4  METAL-SEMICONDUCTOR CONTACT—RECTIFYING JUNCTION  金属-半导体接触——整流结
    5.4.1  The Schottky Barrier  肖特基势垒结
    5.4.2  The Schottky Junction—Reverse Bias  反偏肖特基结
    5.5  FORWARD APPLIED BIAS—AN INTRODUCTION  正偏结简介
    5.5.1  The pn Junction  pn结
    5.5.2  The Schottky Barrier Junction  肖特基势垒结
    5.5.3  Comparison of the Schottky Diode and the pn Junction Diode  肖特基二极管和pn结二极管的比较
    Σ5.6  METAL-SEMICONDUCTOR OHMIC CONTACTS  金属-半导体的欧姆接触
    Σ5.7  NONUNIFORMLY DOPED PN JUNCTIONS  非均匀掺杂PN结
    5.7.1  Linearly Graded Junctions  线性缓变结
    5.7.2  Hyperabrupt Junctions  超突变结
    5.8  DEVICE FABRICATION TECHNIQUES: PHOTOLITHOGRAPHY, ETCHING, AND BONDING  器件制备技术:光刻、刻蚀和键合
    5.8.1  Photomasks and Photolithography  光学掩膜版和光刻
    5.8.2  Etching  刻蚀
    5.8.3  Impurity Diffusion or Ion Implantation  杂质扩散或离子注入
    5.8.4  Metallization, Bonding, and Packaging  金属化、键合和封装
    5.9  SUMMARY  小结
    PROBLEMS  习题
    CHAPTER 6  Fundamentals of the Metal-Oxide-Semiconductor Field-Effect Transistor  MOS场效应晶体管基础
    6.0  PREVIEW  概览
    6.1  THE MOSFIELD-EFFECT TRANSISTOR ACTION  MOS场效应晶体管作用
    6.1.1  Basic Principle of Operation  基本工作原理
    6.1.2  Modes of Operation  工作模式
    6.1.3  Amplification with MOSFETs  MOSFET放大
    6.2  THE TWO-TERMINAL MOSCAPACITOR  双端 MOS电容
    6.2.1  Energy-Band Diagrams and Charge Distributions  能带结构和电荷分布
    6.2.2  Depletion Layer Thickness  耗尽层厚度
    6.3  POTENTIAL DIFFERENCES IN THE MOSCAPACITOR  MOS电容的电势差
    6.3.1  Work Function Differences  功函数差
    6.3.2  Oxide Charges  氧化层电荷
    6.3.3  Flat-Band Voltage  平带电压
    6.3.4  Threshold Voltage  阈值电压
    Σ6.3.5  Electric Field Profile  电场分布
    6.4  CAPACITANCE-VOLTAGE CHARACTERISTICS  电容-电压特性
    6.4.1  Ideal C-V Characteristics  理想C-V 特性
    Σ6.4.2  Frequency Effects  频率影响
    Σ6.4.3  Fixed Oxide and Interface Charge Effects  氧化层固定电荷和界面电荷的影响
    6.5  THE BASIC MOSFETOPERATION  MOSFET基本工作原理
    6.5.1  MOSFETStructures  MOSFET结构
    6.5.2  Current-Voltage Relationship—Basic Concepts  电流-电压关系——基本概念
    Σ6.5.3  Current-Voltage Relationship—Mathematical Derivation  电流-电压关系——数学推导
    6.5.4  Substrate Bias Effects  衬底偏置效应
    6.6  SMALL-SIGNAL EQUIVALENT CIRCUIT AND FREQUENCY LIMITATION FACTORS  小信号等效电路及频率限制因素
    6.6.1  Transconductance  跨导
    6.6.2  Small-Signal Equivalent Circuit  小信号等效电路
    6.6.3  Frequency Limitation Factors and Cutoff Frequency  频率限制因素与截止频率
    Σ6.7  DEVICE FABRICATION TECHNIQUES  器件制备技术
    6.7.1  Fabrication of an NMOS Transistor  NMOS晶体管的制备
    6.7.2  The CMOS Technology  CMOS技术
    6.8  SUMMARY  小结
    PROBLEMS  习题
    CHAPTER 7  Metal-Oxide-Semiconductor Field-Effect Transistor: Additional Concepts  MOS场效应晶体管的其他概念
    7.0  PREVIEW  概览
    7.1  MOSFETSCALING  MOSFET按比例缩小法则
    7.1.1  Constant-Field Scaling  恒电场按比例缩小法则
    7.1.2  Threshold Voltage—First Approximation  阈值电压——一级近似
    7.1.3  Generalized Scaling  一般按比例缩小法则
    7.2  NONIDEAL EFFECTS  非理想效应
    7.2.1  Subthreshold Conduction  亚阈值电导
    7.2.2  Channel Length Modulation  沟道长度调制效应
    7.2.3  Mobility Variation  沟道迁移率变化
    7.2.4  Velocity Saturation  速度饱和
    7.3  THRESHOLD VOLTAGE MODIFICATIONS  阈值电压修正
    7.3.1  Short-Channel Effects  短沟道效应
    7.3.2  Narrow-Channel Effects  窄沟道效应
    7.3.3  Substrate Bias Effects  衬底偏置效应
    7.4  ADDITIONAL ELECTRICAL CHARACTERISTICS  其他电学特性
    7.4.1  Oxide Breakdown  氧化层击穿
    7.4.2  Near Punch-Through or Drain-Induced Barrier Lowering  临界穿通或漏致势垒降低
    7.4.3  Hot Electron Effects  热电子效应
    7.4.4  Threshold Adjustment by Ion Implantation  离子注入调整阈值电压
    7.5  DEVICE FABRICATION TECHNIQUES: SPECIALIZED DEVICES  器件制备技术:特种器件
    7.5.1  Lightly Doped Drain Transistor  轻掺杂漏晶体管
    7.5.2  The MOSFETon Insulator  绝缘体上 MOSFET
    7.5.3  The Power MOSFET 功率 MOSFET
    7.5.4  MOSMemory Device  MOS存储器
    7.6  SUMMARY  小结
    PROBLEMS  习题
    CHAPTER 8  Nonequilibrium Excess Carriers in Semiconductors  半导体中的非平衡过剩载流子
    8.0  PREVIEW  概览
    8.1  CARRIER GENERATION AND RECOMBINATION  载流子的产生与复合
    8.2  ANALYSIS OF EXCESS CARRIERS  过剩载流子的分析
    8.2.1  Continuity Equations  连续性方程
    8.2.2  Time-Dependent Diffusion Equations  时间相关的扩散方程
    8.3  AMBIPOLAR TRANSPORT  双极输运
    8.3.1  Derivation of the Ambipolar Transport Equation  双极输运方程的推导
    8.3.2  Limits of Extrinsic Doping and Low Injection  非本征掺杂和小注入限制
    8.3.3  Applications of the Ambipolar Transport Equation  双极输运方程的应用
    8.3.4  Dielectric Relaxation Time Constant  介电弛豫时间常数
    8.3.5  Haynes-Shockley Experiment  海恩斯-肖克利实验
    8.4  QUASI-FERMI ENERGY LEVELS  准费米能级
    8.5  EXCESS CARRIER LIFETIME  过剩载流子的寿命
    8.5.1  Shockley-Read-Hall Theory of Recombination  肖克利-里德-霍尔复合理论
    8.5.2  Limits of Extrinsic Doping and Low Injection  非本征掺杂和小注入限制
    8.6  SURFACE EFFECTS  表面效应
    8.6.1  Surface States  表面态
    8.6.2  Surface Recombination Velocity  表面复合速度
    8.7  SUMMARY  小结
    PROBLEMS  习题
    CHAPTER 9  The pn Junction and Schottky Diodes  pn结二极管与肖特基二极管
    9.0  PREVIEW  概览
    9.1  THE PN AND SCHOTTKY BARRIER JUNCTIONS REVISITED  回顾PN结和肖特基势垒结
    9.1.1  ThepnJunction pn结
    9.1.2  The Schottky Barrier Junction  肖特基势垒结
    9.2  THE PN JUNCTION—IDEAL CURRENT-VOLTAGE RELATIONSHIP  pn结——理想电流-电压特性
    9.2.1  Boundary Conditions  边界条件
    9.2.2  Minority-Carrier Distribution  少子分布
    9.2.3  Ideal pn Junction Current  理想pn结电流
    9.2.4  Summary of Physics  物理小结
    9.2.5  Temperature Effects  温度效应
    9.2.6  The “Short” Diode  短二极管
    9.2.7  Summary of Results  小结
    9.3  THE SCHOTTKY BARRIER JUNCTION—IDEAL CURRENT-VOLTAGE RELATIONSHIP  肖特基二极管——理想电流-电压关系
    9.3.1  The Schottky Diode  肖特基二极管
    9.3.2  Comparison of the Schottky Diode and the pn Junction Diode  肖特基二极管与pn结二极管的比较
    9.4  SMALL-SIGNAL MODEL OF THE PN JUNCTION PN结二极管的小信号模型
    9.4.1  Diffusion Resistance  扩散电阻
    9.4.2  Small-Signal Admittance  小信号导纳
    9.4.3  Equivalent Circuit  等效电路
    9.5  GENERATION-RECOMBINATION CURRENTS  产生-复合电流
    9.5.1  Reverse-Bias Generation Current  反偏产生电流
    9.5.2  Forward-Bias Recombination Current  正偏复合电流
    9.5.3  Total Forward-Bias Current  总正偏电流
    9.6  JUNCTION BREAKDOWN  结击穿
    9.7  CHARGE STORAGE AND DIODE TRANSIENTS  电荷存储与二极管瞬态
    9.7.1  The Turn-Off Transient  关瞬态
    9.7.2  The Turn-On Transient  开瞬态
    9.8  SUMMARY  小结
    PROBLEMS  习题
    CHAPTER 10  The Bipolar Transistor  双极型晶体管
    10.0  PREVIEW  概览
    10.1  THE BIPOLAR TRANSISTOR ACTION  双极型晶体管的工作原理
    10.1.1  The Basic Principle of Operation  基本工作原理
    10.1.2  Simplified Transistor Current Relations  简化的晶体管电流关系
    10.1.3  The Modes of Operation  工作模式
    10.1.4  Amplification with Bipolar Transistors  双极型晶体管放大电路
    10.2  MINORITY-CARRIER DISTRIBUTION  少子分布
    10.2.1  Forward-Active Mode  正向有源模式
    10.2.2  Other Modes of Operation  其他工作模式
    10.3  LOW-FREQUENCY COMMON-BASE CURRENT GAIN  低频共基极电流增益
    10.3.1  Contributing Factors  贡献因子
    10.3.2  Mathematical Derivation of Current Gain Factors  电流增益系数的数学推导
    10.3.3  Summary and Review  小结与回顾
    10.3.4  Example Calculations of the Gain Factors  增益系数的计算实例
    10.4  NONIDEAL EFFECTS  非理想效应
    10.4.1  Base Width Modulation  基区宽度调制
    10.4.2  High Injection  大注入效应
    10.4.3  Emitter Bandgap Narrowing  发射区带隙变窄
    10.4.4  Current Crowding  电流集边效应
    Σ10.4.5  Nonuniform Base Doping  非均匀基区掺杂
    10.4.6  Breakdown Voltage  击穿电压
    10.5  HYBRID-PI EQUIVALENT CIRCUIT MODEL  混合π型等效电路模型
    10.6  FREQUENCY LIMITATIONS  频率限制
    10.6.1  Time-Delay Factors  时延因子
    10.6.2  Transistor Cutoff Frequency  晶体管的截止频率
    Σ10.7  LARGE-SIGNAL SWITCHING  大信号开关特性
    Σ10.8  DEVICE FABRICATION TECHNIQUES  器件制备技术
    10.8.1  Polysilicon Emitter BJT  多晶硅发射极双极型晶体管
    10.8.2  Fabrication of Double-Polysilicon npn Transistor  双多晶硅npn晶体管的制备
    10.8.3  Silicon-Germanium Base Transistor  SiGe基区晶体管
    10.8.4  The Power BJT  功率双极型晶体管
    10.9  SUMMARY  小结
    PROBLEMS  习题
    CHAPTER 11  Additional Semiconductor Devices and Device Concepts  其他半导体器件及器件概念
    11.0  PREVIEW  概览
    11.1  THE JUNCTION FIELD-EFFECT TRANSISTOR  结型场效应晶体管
    11.1.1  The pn JFET  pn JFET
    11.1.2  The MESFET  MESFET
    11.1.3  Electrical Characteristics  电学特性
    11.2  HETEROJUNCTIONS  异质结
    11.2.1  The Heterojunction  异质结简介
    11.2.2  Heterojunction Bipolar Transistors  异质结双极型晶体管
    11.2.3  High-Electron Mobility Transistor  高电子迁移率晶体管
    11.3  THE THYRISTOR  晶闸管
    11.3.1  The Basic Characteristics  基本特性
    11.3.2  Triggering the SCR  SCR的触发机理
    11.3.3  Device Structures  器件结构
    11.4  ADDITIONAL MOSFET CONCEPTS  MOSFET的其他概念
    11.4.1  Latch-Up  闩锁效应
    11.4.2  Breakdown  击穿效应
    11.5  MICROELECTRO MECHANICAL SYSTEMS (MEMS)  微机电系统
    11.5.1  Accelerometers  加速度计
    11.5.2  Inkjet Printing  喷墨打印机
    11.5.3  Biomedical Sensors  生物医学传感器
    11.6  SUMMARY  小结
    PROBLEMS  习题
    CHAPTER 12  Optical Devices  光子器件
    12.0  PREVIEW  概览
    12.1  OPTICAL ABSORPTION  光吸收
    12.1.1  Photon Absorption Coefficient  光吸收系数
    12.1.2  Electron-Hole Pair Generation Rate  电子-空穴对的产生率
    12.2  SOLAR CELLS  太阳能电池
    12.2.1  The pn Junction Solar Cell  pn结太阳能电池
    12.2.2  Conversion Efficiency and Solar Concentration  转换效率与太阳光聚集
    12.2.3  The Heterojunction Solar Cell  异质结太阳能电池
    12.2.4  Amorphous Silicon Solar Cells  非晶硅太阳能电池
    12.3  PHOTODETECTORS  光电探测器
    12.3.1  Photoconductor  光电导探测器
    12.3.2  Photodiode  光电二极管
    12.3.3  PIN Photodiode  PIN光电二极管
    12.3.4  Avalanche Photodiode  雪崩光电二极管
    12.3.5  Phototransistor  光电晶体管
    12.4  LIGHT-EMITTING DIODES  发光二极管
    12.4.1  Generation of Light  光产生
    12.4.2  Internal Quantum Efficiency  内量子效率
    12.4.3  External Quantum Efficiency  外量子效率
    12.4.4  LED Devices  LED器件
    12.5  LASER DIODES  激光二极管
    12.5.1  Stimulated Emission and Population Inversion  受激辐射与粒子数反转
    12.5.2  Optical Cavity  光学谐振腔
    12.5.3  Threshold Current  阈值电流
    12.5.4  Device Structures and Characteristics  器件结构与特性
    12.6  SUMMARY  小结
    PROBLEMS  习题
    APPENDIX A  Selected List of Symbols  部分参数符号列表
    APPENDIX B  System of Units, Conversion Factors, and General Constants  单位制、单位换算和通用常数
    APPENDIX C  The Periodic Table  元素周期表
    APPENDIX D  Unit of Energy—The Electron-Volt  能量单位——电子伏特
    APPENDIX E  “Derivation” and Applications of Schrödinger’s Wave Equation  薛定谔方程的“推导”和应用
    APPENDIX F  Answers to Selected Problems  部分习题答案
    INDEX  索引
    展开

    前     言

    PREFACE
    PHILOSOPHY AND GOALS
    The purpose of this text is to provide a basis for understanding the characteristics, operation, and limitations of semiconductor devices. In order to gain this understanding, it is essential to have a thorough knowledge of the physics of the semiconductor material. The goal of this book is to bring together the fundamental physics of the semiconductor material and the semiconductor device physics.
    Since the objective of this text is to provide an introduction to the theory of semiconductor devices, there is a great deal of advanced theory that is not considered. This material is found in more advanced texts. There are occasions in the text where equations and relationships are simply stated with no or very little derivation. Again, the details are found in more advanced texts. However, the author feels that there is enough mathematics included to provide a good foundation for the basic understanding of semiconductor devices in this first course.
    PREREQUISITES
    This text is intended for junior and senior undergraduates in electrical engineering. The prerequisites for understanding the material are college mathematics, up to and including differential equations, and college physics, including an introduction to modern physics and electrostatics. Prior completion of an introductory course in electronic circuits is helpful, but not essential.
    ORDER OF PRESENTATION
    Each instructor has a personal preference for the order in which the course material is presented. The order of presentation of topics in this text is somewhat different compared to many semiconductor textbooks. Chapters 1– 4 cover the basic physics of the semiconductor material and contain topics normally covered initially in any semiconductor device course. Chapter 5 discusses the electrostatics of thepnand Schottky junctions. This material is necessary and sufficient for the understanding of the MOStransistor presented in Chapters 6 and 7. There are two reasons for discussing the MOStransistor at this point. First, since the MOStransistor is fundamental to integrated circuits, this material is presented early enough in the course so that it doesn’t get “short changed,” as it might when covered at the end of a course. Second, since a “real” semiconductor device is discussed fairly early in the course, the reader may have more motivation to continue studying this course material.
    After the MOStransistor is presented, the nonequilibrium characteristics of the semiconductor material is presented in Chapter 8 and then the forward-biasedpnjunction and Schottky diodes are discussed in Chapter 9. The bipolar transistor is presented in Chapter 10. Chapter 11 covers additional devices such as junction field-effect transistors and thyristors. Finally, optical devices are discussed in Chapter 12.
    One possible disadvantage to this order of presentation is that the discussion of thepnjunction is “interrupted.” However, the author feels that a “just-in-time” approach is justified. Some discussion of thepnjunction is necessary before presenting the MOStransistor. However, if the entire discussion of thepnjunction, including the discussion of nonequilibrium excess carriers, took place before the MOStransistor, then much of the knowledge gained of forward-biasedpnjunctions would be lost by the reader by the time the bipolar transistor is discussed.
    The following table lists the textbook approach to the order of presentation of topics. Unfortunately, because of time constraints, every topic in every chapter cannot be covered in a one-semester course.
    Textbook Approach
    Chapter 1	Crystal structure
    Chapter 2	Selected topics from quantum mechanics and theory of solids
    Chapter 3	Semiconductor material physics
    Chapter 4	Transport phenomena
    Chapter 5	Electrostatics of thepnjunction
    Chapter 6	The MOStransistor
    Chapter 7	Selected topics for advanced MOSFETs
    Chapter 8	Selected topics from nonequilibrium semiconductor physics
    Chapter 9	Thepnjunction diode
    Chapter 10	The bipolar transistor
    Chapter 11	Selected topics from other devices
    Chapter 12	Selected topics from optical devices
    
    For those instructors who prefer the classical approach and wish to cover the bipolar transistor before the MOStransistor, the following table lists the order of presentation. The chapters are written so that this order of presentation is very plausible.
    Classical Approach
    Chapter 1	Crystal structure
    Chapter 2	Selected topics from quantum mechanics and theory of solids
    Chapter 3	Semiconductor material physics
    Chapter 4	Transport phenomena
    Chapter 8	Selected topics from Nonequilibrium semiconductor physics
    Chapter 5	Electrostatics of thepnjunction
    Chapter 9	Thepnjunction diode
    Chapter 10	The bipolar transistor
    Chapter 6	The MOStransistor
    Chapter 7	Selected topics from advanced MOSFETs
    Chapter 11	Selected topics from other devices
    Chapter 12	Selected topics from optical devices
    
    USE OF THE BOOK
    The text is intended for a one-semester course at the junior or senior level. As with most textbooks, there is more material than can be conveniently covered in one semester; this enables each instructor some flexibility in designing the course to his or her own specific needs.
    At the end of several chapters, there is a section dealing with fabrication technology. In Chapter 1, this topic deals with the growth of semiconductor materials and the oxidation process. In Chapter 3, this topic deals with the introduction of specific impurities into the semiconductor by either diffusion or ion implantation. In later chapters, this topic deals with the fabrication of specific devices. In each case, the fabrication discussion is relatively short and intended only to give the reader a basic understanding of the fabrication technology. These sections, as well as a few other sections in the text, are denoted by the symbol Σ in front of the section heading. The symbol Σ shows that reading these sections will aid in the total summation of the understanding of semiconductor devices. However, a basic understanding of semiconductor device physics can be accomplished without studying these sections in detail during this first introductory course.
    FEATURES OF THE BOOK
    ■  Preview section: A preview section introduces each chapter. This preview links the chapter to previous chapters and states the chapter’s goals, that is, what the reader should gain from the chapter.
    ■  Historical and Present-Day Insights: A Historical Insight section relates the chapter material to a few historical events and a Present-Day Insight section relates the chapter material to current research and manufacturing events.
    ■  Icon: Σ, indicates sections that are to be read for understanding to increase the total summation of knowledge of semiconductor devices. However, a detailed study of these sections is not required during this first introductory course.
    ■  Key terms in the margin: Key terms are listed in the margin of the text. Quickly finding a key term adjacent to the text in which the material is discussed should aid the student in reviewing the material.
    ■  Examples: There are a liberal number of examples given in the text to reinforce the theoretical concepts being developed. These examples contain all the details of the analysis or design, so the reader does not have to fill in missing steps.
    ■  Exercise problems: An exercise problem is given after each example. These exercises are similar in scope to the preceding example. The ability to solve these exercise problems should be an indication as to whether the student has mastered the previous material. Answers to these problems are given.
    ■  Test Your Understanding exercises: At the end of major sections, additional exercise problems are given. These exercise problems tend to be more comprehensive than the exercise problems given after each example. Answers to these problems are also given.
    ■  Summary: A summary section follows the text of each chapter. This section summarizes the overall results derived in the chapter and reviews the basic concepts developed.
    ■  Checkpoint: A checkpoint section follows the Summary section. This section states the goals that should have been met and states the abilities the reader should have gained. The Checkpoints will help assess progress before moving to the next chapter.
    ■  Review questions: A list of review questions is included at the end of each chapter. These questions serve as a self-test to help the reader determine how well the concepts developed in the chapter have been mastered.
    ■  End-of-chapter problems: A substantial number of problems are provided at the end of each chapter, organized according to the subject of each section. An asterisk in front of a problem indicates a more difficult problem. Answers to a selected number are provided in Appendix F.
    ■  Reading list: A reading list finishes up each chapter. The references indicated by an asterisk are at a more advanced level compared with this text.
    ■  Answers to selected problems: Answers to selected problems are given in Appendix F. Knowing the answer to a problem can aid and reinforce the problem solving.
    展开

    作者简介

    美国新墨西哥大学电气与计算机工程系教授,于新墨西哥大学获博士学位后,成为Hanscom空军基地固态科学实验室电子工程师。1976年加入新墨西哥大学电气与计算机工程系,从事半导体物理与器件课程和电路课程的教学工作。目前仍为该系的返聘教员。另著有Microelectronics Circuit Analysis and Design, Fourth Edition和Semiconductor Physics and Devices:Basic Principles, Fourth Edition两本教材。<BR>美国新墨西哥大学电气与计算机工程系教授,于新墨西哥大学获博士学位后,成为Hanscom空军基地固态科学实验室电子工程师。1976年加入新墨西哥大学电气与计算机工程系,从事半导体物理与器件课程和电路课程的教学工作。目前仍为该系的返聘教员。另著有Microelectronics Circuit Analysis and Design, Fourth Edition和Semiconductor Physics and Devices:Basic Principles, Fourth Edition两本教材。
  • 样 章 试 读
  • 图 书 评 价 我要评论
华信教育资源网